Urolithins and Their Precursors Ellagic Acid and Ellagitannins: Natural Sources, Extraction and Methods for Their Determination
Abstract
:1. Introduction
2. Ellagitannins and Ellagic Acid
2.1. Natural Sources and Occurrence of ETs and EA
2.2. Bioavailability of ETs and EA
Source | Family/Genus | Content | Solvent System | Extraction Method | Reference |
---|---|---|---|---|---|
Fruits | |||||
Cloudberries | Rosaceae/Rubus | 3.15 mg/g a | Aqueous methanol (acidified) | Reflux (20 h) | [18] |
18.25 mg/g a | Ethyl acetate/Methanol | Vortex | [22] | ||
10.90–16.30 mg/g a | 70% aqueous acetone | Solid–liquid extraction | [41] | ||
Raspberries | Rosaceae/Rubus | 2.63–3.30 mg/g a | Aqueous methanol (acidified) | Reflux (20 h) | [18] |
1.55 mg/g a | 70% aqueous acetone | Solid–liquid extraction | [42] | ||
0.16–3.26 mg/g a | - | - | [13] | ||
16.92 mg/g a | 60% acetone (acidified) | Sonication (5 min) | [19] | ||
1.5 mg/g b | Methanol | Soxhlet | [43] | ||
10.65–13.84 mg/g a | Ethyl acetate/Methanol | Vortex | [22] | ||
7.67–9.31 mg/g a | Methanol (acidified) | - | [44] | ||
1.35–5.47 mg/g a | Methanol (acidified) | Magnetic stirring (1 h) | [20] | ||
16.92–17.54 mg/g a | 70% aqueous acetone | Solid–liquid extraction | [41] | ||
47–90 mg/g b | Methanol | Solid–liquid extraction (24 h) | [21] | ||
1.6 mg/g b | Reflux (20 h) | ||||
0.71 mg/g b | Aqueous methanol (1:2) (acidified) | Reflux (2 h) | [45] | ||
8.58–17.92 mg/g a | Aqueous methanol(acidified) | Vortex + sonication (5 min) | [23] | ||
70% aqueous acetone (acidified) | [46] | ||||
Rose Hip | Rosaceae/Rosa | 1.09 a | Aqueous methanol (acidified) | Reflux (20 h) | [18] |
Strawberries | Rosaceae/Fragaria | 0.68–0.85 mg/g a | Aqueous methanol (acidified) | Reflux (20 h) | [18] |
0.71–0.83 mg/g a | - | - | [13] | ||
0.63 mg/g b | Methanol | Soxhlet | [43] | ||
0.64 mg/g a | Methanol | Sonication (10 min) | [47] | ||
4.51–5.64 mg/g a | Ethyl acetate | Vigorous mixing | [22] | ||
0.13–0.32 mg/g a | Methanol | Agitation (30 min) | [48] | ||
0.12–1.29 mg/g a | 70% aqueous acetone | Solid–liquid extraction | [49] | ||
0.31 mg/g a | Aqueous methanol (1:2) (acidified) | Reflux (20 h) | [45] | ||
0.40 mg/g a | Aqueous methanol (acidified) | Reflux (2 h) | [23] | ||
0.81–1.84 mg/g a | 70% aqueous acetone | Solid–liquid extraction | [41] | ||
0.29 mg/g a | 70% aqueous acetone | Sonication (10 min) | [50] | ||
0.77 mg/g a | Aqueous methanol (acidified) | Reflux (20 h) | [18] | ||
0.75–0.79 mg/g a | Aqueous methanol (acidified) | Reflux (20 h) | [18] | ||
Blackberry | Rosaceae/Rubus | 3.43 mg/g a | 70% aqueous acetone | Solid–liquid extraction | [42] |
1.5–2.7 mg/g a | - | - | [13] | ||
0.63 mg/g a | 80% aqueous methanol (acidified) | Sonication (10 min) | [51] | ||
Arctic Bramble | Rosaceae/Rubus | 24.91 mg/g a | Ethyl acetate | Vigorous mixing | [22] |
Caneberries | Rosaceae/Rubus | 8.7–32.2 mg/g b | Methanol | Solid–liquid extraction (24 h) | [52] |
Rose Hip | Rosaceae/Rosa | 1.09 mg/g a | Aqueous methanol (acidified) | Reflux (20 h) | [18] |
Boysenberry | Rubeae/Rubus | 1.68 mg/g a | Methanol | Sonication (10 min) | [47] |
Cranberries | Ericaceae/Vaccinium | 0.12 mg/g b | Methanol | Soxhlet | [43] |
Pomegranate | Lythraceae/Punica | 0.58–1.77 mg/g a | - | - | [13] |
40.59 mg/g (mesocarp) a | 80% aqueous methanol (acidified) | Stirring | [53] | ||
43.98 mg/g (peel) a | |||||
1.25 mg/g a | Deionized water | Pressurized water extraction | [54] | ||
46.63 mg/g (fruit) a | Ethyl acetate | - | [55] | ||
81.23 mg/g (peel) a | Solid–liquid extraction | ||||
5.21–26.25 mmol/L a | Water | [56] | |||
Guava | Myrtaceae/Psidium | 0.20–0.25 mg/g a | - | - | [13] |
Sea Buckthorn | Elaeagnaceae/Hippophae | 0.01 mg/g a | Aqueous methanol (acidified) | Reflux (20 h) | [18] |
Kakadu Plum Fruit | Combretaceae/Terminalia | 8.80 mg/g a | Methanol | Sonication (10 min) | [47] |
10.69 mg/g b | Methanol | Sonication (10 min) | [57] | ||
Grapes | Vitaceae/Vitis | 0.43 mg/g (seeds) b | Methanol: water (4:1) acidified | Sonication (1 h) | [58] |
0.46–0.49 mg/g (skin) a | |||||
0.16–0.22 mg/g a | |||||
Longan Seed | Sapindaceae/Dimocarpus | 1.56 mg/g b | 50% aqueous ethanol | Water bath (1 h) | [59] |
Mango Kernel | Anacardiaceae/Mangifera | 0.031–1.18 mg/g b | 50% aqueous ethanol | Water bath (1 h) | [59] |
0.34–0.74 mg/g b | 50% aqueous methanol | Water bath (1 h) | |||
Pecan Kernels | Juglandaceae/Carya | 20.96–86.21 mg/g b | 80% aqueous methanol | Solid–liquid extraction | [60] |
0.33 mg/g b | Methanol | Soxhlet | [43] | ||
Nuts | Fagaceae/Castanea | 1.61–24.9 mg/kg (raw) b | 70% aqueous methanol | Vortex mixer (30 min) | [61] |
4.30–22.1 mg/kg (boiled) b | |||||
4.31–21.1 mg/kg (roasted) b | |||||
1.49 mg/g a | |||||
8.23 mg/g a | 70% aqueous acetone | Ice bath | [62] | ||
0.36–0.59 mg/g a | - | - | [13] | ||
0.59 mg/g b | Methanol | Soxhlet | [43] | ||
0.40 mg/g a | Aqueous acetone (acidified) | Soxhlet | [63] | ||
Pecan | Juglandaceae/Carya | 3.01 mg/g a | 70% aqueous acetone | Ice bath | [62] |
0.11–0.33 mg/g a | - | - | [13] | ||
0.70 mg/g a | Water | Reflux | [64] | ||
0.22 mg/g a | Aqueous acetone (acidified) | Soxhlet | [63] | ||
Medicinal and aromatic plants | |||||
Psidium friedrichsthalianum-Nied | Myrtaceae/Psidium | 2.43 mg/g (peel) a | Methanol: water (9:1) acidified | Sonication | [65] |
3.06 mg/g (flesh) a | |||||
(Psidium guajava L.) | Myrtaceae/Psidium | 5.72–30.6 mg/100 g b | Methanol | Shaking (30 min) | [66] |
Myrciaria jaboticaba (Vell.) Berg | Myrtaceae/Plinia | 9.1 mg/g a | 70% aqueous methanol | Εxtraction (2 h) | [67] |
Myrciaria cauliflora | Myrtaceae/Plinia | 45.5–124.4 mg/g a | 50% aqueous acetone | Overhead stirrer | [68] |
7.6 mg/g (peel) a | 50% aqueous acetone | Overhead stirrer | [69] | ||
161.9 mg/g (seed) a | |||||
8.78 mg/g (pulp) a | |||||
Myrciaria dubia | Myrtaceae/Plinia | 7.14 mg/100 g (peel) a | 50% aqueous methanol (acidified) | Vortex + sonication (15 min) | [70] |
6.73 mg/100 g (pulp) a | 50% aqueous methanol (acidified) | ||||
381.98 mg/100 g (seeds) a | |||||
Eucalyptus grandis | Myrtaceae/Eucalyptus | 47.75 mg/g (extract) b | Dichloromethane/50% aqueous methanol | Soxhlet/Stirring (24 h) | [33] |
2.22 mg/g (drywood) b | |||||
Eucalyptus globulus | Myrtaceae/Eucalyptus | 4.95–5.08 mg/g (extract) b | Dichloromethane/50% aqueous methanol | Soxhlet/Stirring (24 h) | [71] |
0.42–0.71 mg/g (bark) b | |||||
Myrtus communis L. | Myrtaceae/Myrtus | 1.028–2.584 mmol/L (leaves) a | Water | Solid–liquid extraction | [56] |
Feijoa sellowiana | Myrtaceae/Feijoa | 12.04 μg/g (leaves) b | 70% aqueous acetone/ethyl acetate/n-butanol | Solid–liquid extraction | [72] |
7.64 μg/g (flowerbuds) b | |||||
4.77 μg/g (branches) b | |||||
4,53 μg/g (fruits) b | |||||
Plinia peruviana | Myrtaceae/Plinia | 152.3 μg/mL b | 50% aqueous ethanol | Ultra pressure | [73] |
Fragaria × ananassa Duch | Rosaceae/Fragaria | 33.18–151.78 mg/g (leaves) a | Acetone:water (3:1) acidified | Vortex + sonication (15 min) | [74] |
1.79–19.3 mg/g (roots) a | |||||
2.96–18.56 mg/g (fruits) a | |||||
Prunus avium | Rosaceae/Prunus | 0.059 mg/g a | Methanol | Sonication (30 min) | [34] |
Potentilla tormentilla | Rosaceae/Potentilla | 6.8–49.33 mg/g (rhizomes) a | 50% aqueous methanol | Sonication (15 min) | [75] |
Agrimonia asiatica | Rosaceae/Agrimonia | 63.61 mg/g a | Water | Stirring + sonication (60 min) | [76] |
Mangifera indica L. | Anacardiaceae/Mangifera | 0.018–0.13 mg/g b | 80% aqueous methanol | Sonication (15 min) | [77] |
0.14 mg/g (peel) b | Ethanol: Water (1:1) | - | [78] | ||
0.41 mg/g (seed) b | Acetone: Water (1:1) | - | |||
Syzygium cumini Lam | Myrtaceae/Syzygium | 0.00–0.26 mg/g a | Methanol:Water (60:37) (acidified) | Homogenization | [79] |
Myrciaria floribunda | Myrtaceae/Myrciaria | 2.21 mg/g b | 80% aqueous methanol | Liquid-solid extraction | [80] |
Myrtus communis L. | Myrtaceae/Myrtus | 8.54 mg/g a | 71% aqueous ethanol | Pressurized-liquid extraction | [81] |
Syzygium cumini L. | Myrtaceae/Syzygium | 0.13–0.36 μg/g (pulp) b | Petroleum ether/ethyl acetate/methanol/water | Soxhlet | [82] |
18.65–32.70 μg/g (seed) b | |||||
7.14–15.30 μg/g (seed coat) b | |||||
34.60–48.37 μg/g (kernel) b | |||||
Juglans regia L. | Juglandaceae/Juglans | 412.9–552.9 mg/g a | Methanol | Vortex + sonication ice water (60 min) | [83] |
Terminalia ferdinandiana | Combretaceae/Terminalia | 30.51–140.25 mg/g a | 80% aqueous methanol (acidified) | Vortex + sonication (15 min) | [84] |
Quercus alba | Fagaceae/Quercus | 1.06 mg/g a | 80% aqueous methanol | Sonication (30 min) | [34] |
3.95 mg/g a | Ethanol:Water (62.5: 37.5) | Stirring | [85] | ||
Quercus petraea | Fagaceae/Quercus | 2.51 mg/g a | 80% aqueous methanol | Sonication (30 min) | [34] |
Quercus pyrenaica | Fagaceae/Quercus | 2.94 mg/g a | 80% aqueous methanol | Sonication (30 min) | [34] |
Quercus robur | Fagaceae/Quercus | 4.07 mg/g a | 80% aqueous methanol | Sonication (30 min) | [34] |
8.36 mg/g a | Ethanol:Water (62.5: 37.5) | Stirring | [85] | ||
Castanea sativa | Fagaceae/Castanea | 8.91 mg/g a | 80% aqueous methanol | Sonication (30 min) | [34] |
Castanea crenata | Fagaceae/Castanea | 2.26 mg/g b | 80% aqueous methanol | Maceration (48 h) | [86] |
Terminalia chebula Retz | Combretaceae/Terminalia | 174.43 mg/g a | Water | Boil | [87] |
Phyllanthus amarus | Phyllanthaceae/Phyllanthus | 444.21 μg/mL a | 80% aqueous ethanol | Soak (9 days) | [88] |
Quassia undulata | Simaroubacea/Quassia | 2.49 mg/g b | Cold water | Soak (24 h) | [89] |
Acalypha hispida | Euphorbiaceae/Acalypha | 1.19–5.41 mg/g b | Ethanol | Soak (72 h) | [90] |
Baccharis trinervis | Asteraceae/Baccharis | 1.35–9.74 mg/g b | Hot water | Infusion (15 min) | [91] |
Carpobrotus edulis | Aizoaceae/Carpobrotus | 0.45 μg/g b | Water | Stirring (30 min) | [92] |
0.55 μg/g b | Aqueous ethanol (1:1) | ||||
Clematis orientalis | Ranunculaceae/Clematis | 0.46 mg/g b | 80% aqueous methanol.Hexane | Shaking | [93] |
Clematis ispahanica | Ranunculaceae/Clematis | 0.81 mg/g b | Chloroform | Shaking | [93] |
Hippophae rhamnoides L. | Elaeagnaceae/Hippophae | 4.94–6.72 mg/g b | 80% aqueous methanol | Homogenization + sonication (20 min) | [94] |
Euterpe edulis | Arecaceae/Euterpe | 1.40 mg/g a | 70% aqueous ethanol (acidified) | Shaking | [95] |
Juglans nigra L. | Juglandaceae/Juglans | 9.05–98.41 μg/g b | methanol | Sonication in cool water (60 min) | [96] |
Sterculia striata | Malvaceae/Sterculia | 0.049 mg/g (nut) b | water | Sonication (60 min) | [97] |
0.046 mg/g (shell) b | Sonication (45 min) | ||||
0.032 mg/g (pelliche) b | Sonication (45 min) | ||||
Juices/Wines/Liquors | |||||
Pomegranate Juice | Lythraceae/Punica | 26.5–33.2 mg/L b | - | - | [98] |
5.58 g/L a | - | - | [99] | ||
90.4–2071.0 mg/L a | - | - | [53] | ||
0.035–2.03 mmol/L a | Methanol | Shaking (3 min) | [100] | ||
1242.95 mg/L a | - | - | [101] | ||
Jabuticaba juice | Myrtaceae/Plinia | 24.37–143 mg/L b | Water | Steam extraction (30 min) | [102] |
Eugenia brasiliensis Lam | Myrtaceae/Eugenia | 146.1 mg/L a | Water | Homogenization | [103] |
Muscadine juice | Vitaceae/Vitis | 9.08–107.31 mg/L a | Ethyl acetate | - | [104] |
guava juice | Myrtaceae/Psidium | 1.41–1.48 mg/g a | - | Pasteurization | [65] |
Raspberry juice | Rosaceae/Rubus | 2.17–3.24 mg/g a | - | - | [46] |
Wine | Vitaceae/Vitis | 2.27–77.76 mg/L a | [104] | ||
20–50 mg/L a | - | - | [13] | ||
0.53–23.8 mg/L a | - | - | [105] | ||
7.88–11.61 mg/L b | Diethyl ether/ethyl acetate | - | [106] | ||
4.54–4.55 mg/L a | Diethyl ether/ethyl acetate | - | |||
Pomegranate wine lees | Lythraceae/Punica | 4.36 mg/g a | 70% aqueous methanol | Vortex/sonication (10 min) | [107] |
Eucalyptus globulus | Myrtaceae/Eucalyptus | 1165.5 mg/L b | Ethyl acetate | Liquid–liquid extraction (30 min) | [108] |
Others | |||||
Fruit pureé | 8.8–43 mg/100 g a | 80% ethanol | - | [109] | |
8.5–44.1 mg/100 g a | - | ||||
Strawberry Pureé | 0.14–0.35 mg/g a | 70% aqueous acetone | Sonication (10 min) | [50] | |
Kakadu Plum Fruit Pureé | 11.65–14.96 mg/g a | Acetone | Sonication (10 min) | [57] | |
Strawberry Cake | 25.21 mg/g a | 70% aqueous acetone | Vortex/sonication (15 min) | [110] | |
Vortex/sonication (5 min), Kept in dark (15 min) | |||||
Strawberry Cake | 17.70–81.01 mg/g a | 70% aqueous acetone (acidified) | [46] | ||
Strawberry Jam | 0.17–0.29 mg/g b | Methanol:water (70:30) (acidified) | Homogenization in ice bath | [111] | |
0.24 mg/g a | Aqueous methanol (acidified) | Reflux (20 h) | [18] | ||
Raspberry jam | 0.76 mg/g a | Aqueous methanol (acidified) | Reflux (20 h) | [18] |
2.3. Extraction ETs and EA from Natural Sources
2.4. Analytical Techniques for the Determination of ETs and EA
3. Urolithins
3.1. Production of Uros from ETs and EA Metabolism
3.2. Bioavailability of Uros and Their Metabolites
3.3. Extraction of Uros from Biological Samples
3.4. Analytical Techniques for the Determination of Uros
Analyte | Sample Type— Origin | Analytical Technique | Instrumental Analysis | Column/Mobile Phase | Sample Preparation— Solvent Extraction | Ref. |
---|---|---|---|---|---|---|
Uro-A, Uro-B | Liver, kidney, heart, brain tissue and biofluids (blood and urine) of adult male rats. | UHPLC–MS/MS | Waters Acquity UPLC (Milford, MA, USA) equipped with a binary pump, autosampler, column compartment and an Acquity PDA eλ detector, coupled to a Waters Xevo TQ (Milford, MA, USA) triple quadrupole MS with an electrospray interface. | Waters Acquity UPLC column HSS T3 (100 mm × 2.1 mm, 1.8 mm, Milford, MA, USA). The mobile phase consisted of (A) water/formic acid (99.9:0.1, v/v) and (B) ACN/formic acid (99.9:0.1, v/v; flow rate 0.4 mL/min. | Extraction with 95% MeOH. | [212] |
Uro-A Uro-A, Uro-B Uro-A-glucuronide | Cecal digesta (Wistar rats): intake of strawberry. Urine, plasma, cecal digesta (Wistar rats): intake of strawberry. | HPLC-PDA | HPLC Knauer Smartline system with photoDAD, (Knauer, Berlin, Germany). | Gemini C18 column (250 × 4.60 mm, 5 μm, Phenomenex, Torrance, CA USA). The mobile phase consisted of (A) 0.05% phosphoric acid in H2O and (B) 0.05% phosphoric acid in 80% ACN; flow rate 1.25 mL/min. | Extraction with acetone. | [160,161,194] |
Uro-A | Cecal digesta (Wistar rats): intake of blackberry. | HPLC-ESI-MS | Dionex UltiMate 3000 UHPLC coupled to a Thermo Scientific Q Exactive quadrupole ion trap MS (Thermo Fisher Scientific, Waltham, MA, USA). | Kinetex 110A C18 column (150 × 2.1 mm, 2.6 μm, Phenomenex, Torrance, CA USA). The mobile phase consisted of (A) 0.1% formic acid in H2O and (B) 0.1% formic acid in ACN; flow rate 0.5 mL/min. | Extraction with acetone. | [195] |
Uros (A, B, C, D, M5, M6 and M7) | Colonic fermentation samples. | HPLC-DAD-QTOFMS/MS | HPLC (CBM-20A Prominence, Shimadzu, Kyoto, Japan) equipped with a degasser (DGU20A5 prominence, Shimadzu, Japan) and column oven (CTO-20A Prominence, Shimadzu, Japan), coupled to DAD (SPDM-20A Prominence, Shimadzu, Japan) and connected to a QTOF MS analyzer and ESI (micrOTOF-QIII, Bruker Daltonics, Bremen, Germany). | C-18 Hypersil Gold column (150 mm × 4.6 mm; 5 μm, Thermo Fisher Scientific, Waltham, MA, USA). The mobile phase consisted of (A) 5% (v/v) methanol in acidified water (0.1% (v/v) of formic acid) and (B) 0.1% (v/v) of formic acid in ACN; flow rate 1.0 mL/min. | Extraction using an acidified acetone solution (0.35% formic acid, v/v). | [203] |
Uro-A, -B, -C, -D | Plasma, liver, prostate, colon tissue and luminal content (C57BL/6 mice): intake of raspberries. | UPLC-MS/MS | UPLC system (ACQUITY, Waters, Milford, MA, USA) coupled to a triple quadrupole MS (Quattro Ultima, Waters, Milford, MA, USA). | BEH C18 Reverse Phase column (2.1 × 50 mm, 1.7 μm, ACQUITY UPLC, Waters). The mobile phase consisted of (A) 1% aqueous formic acid (v/v) and (B) 1% formic acid in ACN; flow rate 0.3 mL/min. | Samples were treated with β-glucuronidase/sulfatase (S9296, Sigma-Aldrich, St. Louis, MO, USA). Extraction with diethyl ether. | [189] |
Uro-A and uro-B | Plasma (CD1 Harlan-Nossan male mice): intake of E. angustifolium extract. | UHPLC-MS/MS | Shimadzu Nexera UHPLC system with two LC 30 CE pumps, a SIL 30AC autosampler, a CTO 20AC column oven, and a CBM 20A controller. Coupled to a triple quadrupole LCMS 8050 (Shimadzu, Kyoto, Japan) with an ESI source. | ACQUITY UPLC® BEH C18 column (50 mm × 2.1 mm, 1.7 μm, Waters, Milford, MA, USA). The mobile phase consisted of (A) 0.1% aqueous acetic acid and (B) ACN plus 0.1% acetic acid; flow rate 0.5 mL/min. | Extraction with ice-cold acetonitrile acidified with 98% HCN and 2% HCOOH. | [199] |
Uro-B, Uro-C | In vitro gastrointestinal digestion of raspberry extract. | HPLC-MS | Exactive™ Plus Orbitrap MS with an ESI Interface (Thermo Fisher Scientific Inc, USA). | Thermo Hypersil GOLD C18 column (100 mm × 2.1 mm, 3 μm, Thermo Fisher Scientific Inc., USA). The mobile phase consisted of (A) 1% formic acid in water and (B) 1% formic acid in ACN; flow rate 0.35 mL/min. | Filtration by 0.22 μm membrane and direct injection. | [211] |
Uro-A | Samples of in vitro unfermented/fermented pomegranate juice. | HPLC LC-MS/MS | HPLC Waters 1525 Q-Exactive LC-MS/MS (Thermo Fisher Scientific, Shanghai, China). | Hypersil GOLD C18 column (2.1 mm × 100 mm, 1.9 μm, Thermo Fisher Scientific, Shanghai, China). The mobile phase consisted of (A) 0.1% formic acid in water, and (B) ACN; flow rate 0.3 mL/min. | Extraction with diethyl ether and ethyl acetate. | [206] |
Uro-A, -B, -C, -M5, -M6, isoUro-A | Samples of in vitro unfermented/fermented pomegranate peels. | HPLC-MS | LC-MS system (G2-XS QTof, Waters Corporation, Milford, MA, United States). | ACQUITY UPLC® BEH C18 column (100 mm × 2.1 mm, 1.7 μm, Waters, Milford, MA, USA). The mobile phase consisted of (A) 0.1% aqueous formic acid and (B) ACN plus 0.1% formic acid; flow rate 0.35 mL/min. | Extraction with ethyl acetate acidified with 1.5% formic acid. | [207] |
Uro-M7, Uro-M6, Uro-D, -C, -A | Plasma, liver, cecal content, urine, brain, adipose tissue (C57BL/6J mice): supplementation of Gordonibacter urolithinfaciens. | UPLC-MS | Agilent 1290 Infinity II UHPLC system coupled to an Agilent 6460 Triple Quadrupole MS with an ESI source (Agilent Technologies Inc., Santa Clara, CA, USA). | ACQUITY UPLC® BEH C18 column (50 mm × 2.1 mm, 1.7 μm, Waters, Milford, MA, USA). The mobile phase consisted of (A) 0.05% aqueous formic acid and (B) ACN plus 0.05%; flow rate 0.45 mL/min. | Plasma, liver, cecal content, urine samples were treated with β-glucuronidase/sulfatase (S9296, Sigma-Aldrich, St. Louis, MO, USA). Extraction with ethyl acetate. Brain and adipose tissue were treated with β-glucuronidase/sulfatase. Extraction using an EMR-lipid 96-well plate. | [190] |
Uro-A and conjugates | Plasma, liver, and feces (C57BL/6 mice). | HPLC-UV | HPLC system (SPD-M20A DAD, Shimadzu, Kyoto, Japan). UPLCESIMS (Thermo Scientific Orbitrap Elite Mass Spectrometer). | C18 HQ column (4.6 mm × 250 mm, 5 μm, Interchim, Montluçon, France). The mobile phase consisted of 50% MeOH and 50% ddH2O (0.05% phosphoric acid); flow rate 1.0 mL/min. | Plasma: extraction with MeOH. Liver and feces: ultrasonication and extraction with MeOH:12N HCl:water (79.9: 0.1: 20, v/v/v). | [162] |
Uros and their conjugates | Plasma, urine, feces, ruminal content from animals and beaver castoreum. | HPLC-DAD-MS/MS and HPLC-TOF-MS/MS | HPLC system with a binary pump (G1312A), an autosampler (G1313 A), a degasser (G1322A) and an Agilent 1100 series diode array and a mass detector in series (Agilent Technologies, Waldbronn, Germany). HPLC-TOF-MS Agilent 6220 system with an HPLC system Agilent 1200 series DAD (Agilent Technologies, Waldbronn, Germany). | LiChroCART (C18) column (25 cm × 0.4 cm, 5 μm, Merck, Darmstadt, Germany). The mobile phase consisted of (A) 5% aqueous formic acid and (B) ACN; flow rate 1.0 mL/min. | Feces: extraction with MeOH/HCl/water (79.9:0.1:20, v/v/v). | [164] |
Uro-A | Plasma, hippocampus and cortex (C57BL/6J mice). | HPLC-ESI-MS/MS | LC-MS/MS-18, TQ6500+ Triple quad (AB Sciex Pte. Ltd., USA) with an ESI interface (Waters, Milford, MA, USA). | Waters CORTECS T3 column (2.1 mm × 100 mm, 2.7 μm, Waters, Milford, MA, USA). The mobile phase consisted of (A) 0.1% formic acid in Milli-Q water and (B) 0.1% formic acid in MeOH; flow rate 0.50 mL/min. | Extraction with MeOH. | [201] |
Uro-C | Rat plasma. | LC-ESI–MS/MS | Agilent 1100 LC system (Agilent Technologies, Les Ulis, France) coupled to an API 3000 tandem triple quadrupole MS (ABSciex, Courtaboeuf, France). | C18 Kinetex EVO column (2.1 × 150 mm, 2.6 μm, Phenomenex, Le Pecq, France). The mobile phase consisted of (A) 1% formic acid in water and (B) ACN; flow rate 0.20 mL/min. | Extraction with ethyl acetate. | [213] |
Uro-A, -B, -C, -D and their conjugates | Plasma, urine, bile, intestinal lumen, feces, organs and tissues (iberian pigs). | HPLC-DAD-MS/MS | HPLC system (Agilent Technologies, Waldbronn, Germany) equipped with a DAD and an ion-trap mass detector in series with a binary pump and autosampler and an ESI system (Agilent Technologies, Waldbronn, Germany). | LiChroCART (C18) column (25 cm × 0.4 cm, 5 μm, Merck, Darmstadt, Germany) The mobile phase consisted of (A) 1% aqueous formic acid and (B) ACN; flow rate 1.0 mL/min. | Filtration through a reverse phase C18 Sep-Pak cartridge (Millipore Corp., Burlington, MA, USA). Wash with distilled water (10 mL), elution with MeOH. | [166] |
Uro-A and conjugates | Plasma and tissues (C57BL/6 wild-type mice). intake of pomegranate juice and extract. | HPLC-ESI/MS | LCQ Classic Finnigan system (ThermoFinnigan, San Jose, CA, USA), equipped with an Agilent HP 1100 series HPLC (Santa Clara, CA, USA) system consisting of an autosampler/injector, quaternary pump, column heater, and DAD. | Symmetry C18 column (100 mm × 2.1 mm, 3.5 μm, Waters, Milford, MA, USA). The mobile phase consisted of (A) 2% formic acid in water and (B) 2% formic acid in MeOH; flow rate 0.15 mL/min. | Homogenization in MeOH with 0.1% acetic acid. | [163] |
Uro-A, -B, -C, -M6, isoUro-A and their conjugates | Rumen, feces, plasma and urine (brown swiss bulls). | HPLC-DAD-MS-MS | A HPLC system equipped with a photo-DAD (1100 series, Agilent Technologies, Waldbronn, Germany) in series with an ion-trap MS detector (Bruker Daltonics, Bremen, Germany). | LiChroCART (C18) column (25 cm × 0.4 cm, 5 μm, Merck, Darmstadt, Germany). The mobile phase consisted of (A) 1% aqueous formic acid and (B) ACN; flow rate 1.0 mL/min. | Rumen: Sep-Pak C18 cartridge (Waters, Milford, MA, USA). Wash with distilled water, elution with MeOH. Feces: homogenization with MeOH:HCl:water (79.9/0.1/20, v/v/v). Plasma: extraction with ACN:formic acid (99:1, v/v). | [165] |
Uro-A | Plasma and brain tissue (albino Wistar rats with PD) | UPLC-ESI-QTOF-MS | Agilent 1290 Infinity (Agilent, Les Ulis, France) equipped with an ESI-QTOF-MS (Agilent 6530 Accurate Mass, Agilent, Les Ulis, France). | Eclipse Plus C18 column (2.1 × 100 mm, 1.8 μm, Agilent, Les Ulis, France). The mobile phase consisted of (A) water with 0.1% formic acid and (Β) methanol with 0.1% formic acid; flow rate 0.3 mL/min. | Plasma: extraction with ACN: formic acid (98:2, v/v) Brain: extraction with methanol:HCl (99.9:0.1 v/v). Samples were treated with β-glucuronidase/sulfatase (S9296, Sigma-Aldrich, Poznań, Poland). | [191] |
Uro-M5, -M6, -A, -C, isoUro-A | In vitro cultures of G. urolithinfaciens and E. isourolithinifaciens. | HPLC-DAD-ESI-IT | Agilent 1100 HPLC system coupled to DAD (Agilent Technologies, Waldbronn, Germany) and an ion trap MS (Esquire 1100 with an ESI source, Brüker Daltoniks). | Poroshell 120 EC-C18 column (3 × 100 mm, 2.7 μm, Agilent Technologies, Waldbronn, Germany). The mobile phase consisted of (A) 1% aqueous formic acid (v/v) and (B) ACN; flow rate 0.5 mL/min. | Extraction with ethyl acetate. | [205] |
Analyte | Sample Type— Origin | Analytical Technique | Instrumental Analysis | Column/Mobile Phase | Sample Preparation— Solvent Extraction | Ref. |
---|---|---|---|---|---|---|
Uro-B-glucuronide and aglycone Uro-A | Urine (healthy volunteers): intake of strawberries, raspberries, walnuts, and oak-aged wine. Feces (healthy volunteers): intake of walnuts. Fecal suspensions. | LC-MS/MS | HPLC binary pump, autosampler, and degasser (Agilent Technologies, Waldbronn, Germany) coupled to an ion-trap MS equipped with an ESI system (Agilent Technologies, Waldbronn, Germany). | LiChroCART (C18) column (25 cm × 0.4 cm, 5 μm, Merck, Darmstadt, Germany). The mobile phase consisted of (A) 5% aqueous formic acid and (B) MeOH; flow rate 1.0 mL/min. | Urine: Sep-Pak C-18 solid phase extraction cartridge (Waters Millipore, United States). Wash with water elution with MeOH. Feces: extraction with MeOH:H2O:HCOOH (80:19.9:0.1, v/v). Fecal suspensions: extraction with diethyl ether. | [5,167] |
Uro-A-glucuronide, Uro-B-glucuronide | Prostate, urine and plasma samples (prostate cancer patients): intake of pomegranate or walnuts. | HPLC-DAD-MS/MS | HPLC-DAD system (1200 series, Agilent) coupled to an HTC Ultra ion-trap mass detector (Bruker Daltonics, Bremen, Germany). | SB C18 Zorbax column (150 mm × 0.5 mm, 5 mm, Agilent Technologies, Waldbronn, Germany). The mobile phase consisted of (A) water/formic acid (99:1, v/v) and (B) ACN; flow rate 10.0 mL/min. | Prostate samples: extraction with cold MeOH:HCl:H2O (79.9:0.1:20, v/v/v). Plasma: extraction with ACN. | [175] |
Uro-A-glucuronide, Uro-B-glucuronide | Urine (human subjects): black tea intake | HPLC-PDA-FTMSn | Accela HPLC tower connected to an LTQ/Orbitrap hybrid MS (Thermo Fisher Scientific). | Luna C18 column (2.0 × 150 mm, 3 mm, Phenomenex, Torrance, CA, USA). The mobile phase consisted of (A) water/formic acid (99.9:0.1, v/v) and (B) ACN/formic acid (99.9:0.1, v/v); flow rate 0.19 mL/min. | HLB SPE cartridge (OASIS, Waters, Milford, MA, USA). Wash with water, elution with MeOH. | [180] |
Uro-A, B, C, D and their glucuronides | Urine, plasma, fecal samples (healthy volunteers): intake of walnuts. | HPLC-ESI-MS | Agilent 1100 HPLC, coupled to a HP1101 single-quadrupole, mass-selective detector (Agilent Technologies, Waldbronn, Germany). | RP-18 (250 mm × 4.5 mm, 5 μm, Latek, Eppelheim, Germany). The mobile phase consisted of (A) 2% acetic acid in water and (B) ACN. | Plasma: extraction with 0.2 M hydrochloric acid and EtOH. Feces: extraction with MeOH. | [176] |
Uro-A, B, C, D, isoUro-A | Feces (healthy volunteers): intake of pomegranate juice. | UPLC–MS/MS | Waters Acquity Ultra-PerformanceTM LC system (Waters, Milford, MA, USA), equipped with a binary pump system, coupled to a triple quadrupole detector (TQD) MS (Waters, Milford, MA, USA) with a Z-spray electrospray interface. | Acquity BEH C18 (100 mm × 2.1 mm, 1.7 μm, Waters, Milford, MA, USA). The mobile phase consisted of (A) Milli-Q water:acetic acid (99.8:0.2, v/v) and (B) ACN; flow rate 0.3 mL/min. | Extraction with MeOH/HCl/H2O (79.9:0.1:20, v/v/v). | [196] |
Uro-A | Stool and urine (healthy volunteers): intake of pomegranate juice. | HPLC-DAD | Surveyor HPLC system equipped with DAD, and an autosampler (Thermo Finnigan, San Jose, USA). | Agilent Zorbax SB C-18 column (250 × 4.6 mm, 5 μm, Agilent Technologies, Waldbronn, Germany). The mobile phase consisted of (A) 0.1% phosphoric acid in H2O and (B) ACN; flow rate 0.75 mL/min. | Stool: extraction with DMSO. Samples were treated with β-glucuronidase/sulfatase. | [197] |
Uro-A, -B, -C, -D | Urine and plasma (healthy men) Urine and plasma (prostate cancer patients) | UPLC-ESI-MS/MS | UPLC system (Acquity UPLC, Waters Corp., Milford, MA, USA) coupled to a triple quadrupole MS (Quattro Ultima, Waters Corp., Beverley, MA, USA). | BEH C18 (50 × 2.1 mm, 1.7 μm). The mobile phase consisted of (A) 1% formic acid in H2O and (B) 1% formic acid in ACN; flow rate 0.75 mL/min. | Samples were treated with β-glucuronidase/sulfatase (S9626, Sigma Chem. Co., St Louis, MO, USA). Urine: extraction with diethyl ether. Plasma: extraction with 2:1 ACN:water. | [192] |
Uro-A, -B, -C, -D and their conjugates | Urine and plasma (healthy subjects): intake of grumixama. | HPLC-MS | Prominence LC (Shimadzu, Japan) coupled to microTOF-Q II (Bruker Daltonics, Billerica, MA, USA). | Prodigy ODS3 column (250 × 4.60 mm, 5 μm, Phenomenex Ltd., Cheshire, UK). The mobile phase consisted of (A) 0.5% formic acid in H2O and (B) 0.5% formic acid in ACN; flow rate 1.0 mL/min. | SPE in a C18 column (0.3 g, Supelclean LC-C18alkyl, Supelco, Bellefonte, PA, USA) and a CC6 polyamide column (Macherey-Nagel GmbH and Co., Duren, Germany). Wash with oxalic acid, elution with MeOH (5% TFA). | [103] |
Uro-A, -B, isoUro-A glucuronides | Plasma (healthy older volunteers): intake of strawberry. | HPLC-MS | Agilent 1290 Infinity UHPLC system coupled to an Agilent 6460 Triple Quadrupole MS (Agilent Technologies, Santa Clara, CA, USA). | Poroshell 120 stablebond C18 column (2.1 mm × 150 mm, 2.7 μm). The mobile phase consisted of (A) 1% formic acid in H2O and (B) ACN; flow rate 0.3 mL/min. | C18 SPE cartridges (Agilent Technologies, Santa Clara, CA, USA). Wash with water (1% formic acid). Elution with methanol (1% formic acid) and acetone (1% formic acid). | [174] |
Uro-A, -B, isoUro-A and their conjugates | Plasma and urine (adults with prediabetes and insulin resistance): intake of fructo-oligosaccharide supplemepnts. Intake of red raspberries | UHPLC-QQQ | UHPLC system coupled with a triple quadrupole tandem MS model 6460 (UHPLC-QQQ, Agilent Technologies, Santa Clara, CA, USA) | Poroshell 120 SB-C18 Stable Bond column (2.1 × 150 mm, 2.7 μm). The mobile phase consisted of (A) 1% aqueous formic acid (v/v) and (B) ACN; flow rate 0.3 mL/min. | SPE C18 cartridges (Agilent Technologies, Waldbronn, Germany). | [168,209] |
UA and conjugates | Fecal samples and plasma (healthy subjects): intake of pomegranate juice. | HPLC MS/MS | Agilent 1200 HPLC system (Agilent Technologies, Waldbronn, Germany) coupled to a TSQ Vantage triple-stage quadropole MS/MS (ThermoFisher Scientific, San Jose, CA, USA) | C18 reverse phase column (YMC Co., Ltd., Kyoto, Japan). | Plasma: SPE with a Bond-Elut focus plate (Agilent Technologies, Waldbronn, Germany). Wash with water, elution with MeOH. | [181] |
Urolithin A, B, C, D, M6, M7, isoUroA and conjugates | Human breast milk: walnut Intake. | UPLC-ESI-QTOF | Agilent 1290 Infinity UPLC system coupled to a 6550 Accurate-Mass QTOF (Agilent Technologies, Waldbronn, Germany) | Poroshell 120 EC-C18 column (3 × 100 mm, 2.7 μm). The mobile phase consisted of (A) 0.1% aqueous formic acid (v/v) and (B) ACN plus 0.1% formic acid; flow rate 0.5 mL/min. | Extraction with ACN/formic acid (99:1, v/v). | [177] |
Uro-A, -B, isoUro-A and conjugates | Plasma (subjects with T2DM): intake of red raspberry. Urine (subjects with metabolic syndrome): intake of pomegranate extract. | UPLC-ESI-QTOF-MS/MS | Agilent 1290 Infinity UPLC system coupled to a 6550 Accurate-Mass QTOF (Agilent Technologies, Waldbronn, Germany) | Poroshell 120 EC-C18 column (3 × 100 mm, 2.7 μm). The mobile phase consisted of (A) 0.1% aqueous formic acid (v/v) and (B) ACN plus 0.1% formic acid; flow rate 0.4 mL/min. | Extraction with ACN/formic acid (98:2, v/v). | [169,182] |
Uro-A, -B | Plasma (healthy subjects): intake of pomegranate extract. | UHPLC-MS/MS | Agilent 1290 Infinity II LC (Agilent Technologies, Santa Clara, CA, USA), equipped with a binary solvent manager, sample manager, and heated column compartment coupled to a 6470 triple quadrupole MS detector. | Agilent ZORBAX Eclipse Plus C18 column (50 mm × 2.1 mm, 1.8 μm, Agilent Technologies, Santa Clara, CA, USA). The mobile phase consisted of (A) 0.1% aqueous formic acid and (B) ACN plus 0.1% formic acid; flow rate 0.4 mL/min. | Extraction with ACN (2% formic acid). | [200] |
Uro-A and Uro-B aglycone, glucuronide and sulfate conjugates | Urine (adolescents with metabolic syndrome) | HPLC -LTQ-Orbitrap-HRMS | Accela chromatograph (Thermo Scientific, Hemel Hempstead, UK) equipped with a quaternary pump and a thermostated autosampler. | Kinetex F5 100 Å (50 × 4.6 mm, 2.6 μm, Phenomenex, Torrance, CA, USA). The mobile phase consisted of (A) 0.05% aqueous formic acid and (B) ACN plus 0.05% formic acid; flow rate 0.5 mL/min. | Oasis 96-well reversed-phase phase extraction plates (Waters, MA, USA). Wash with 1.5M formic acid and 0.5% MeOH, elution with MeOH. | [208] |
Uro-A, -B, isoUro-A and their conjugates | Plasma, urine and colon tissue (colorectal cancer patients): intake of pomegranate extract. | UPLC-ESI-QTOF-MS/MS | Agilent 1290 Infinity UPLC system coupled to the 6550 Accurate-Mass quadrupole TOF MS (Agilent Technologies, Waldbronn, Germany). | Poroshell 120 EC-C18 column (3 × 100 mm, 2.7 μm). The mobile phase consisted of (A) 0.1% aqueous formic acid (v/v) and (B) ACN plus 0.1% formic acid; flow rate 0.4 mL/min. | Colon tissue: extraction with MeOH:HCl (99.9:0.1 v/v). Plasma samples: extraction with ACN:formic acid (98:2, v/v). Urine samples: dilution with water containing 0.1% formic acid. | [183] |
Uro-A, -B, -C, -D and their conjugates | Urine (metabolic syndrome subjects): intake of nuts. | LC-PDA-QqQ-MS/MS | API 3000 triple-quadrupole MS (ABSciex, Concord, ON, Canada) equipped with a Turbo Ionspray source coupled to an Acquity UPLC with a Waters binary pump system (Waters, Milford, MA, USA). | Luna C18 analytical column (50 × 2.0 mm, 5 μm; Phenomenex, Torrance, CA, USA). The mobile phase consisted of (A) water/ACN/formic acid, 94.9:5:0.1 (v/v/v) and (B) ACN/formic acid, 99.9:0.1 (v/v); flow rate 0.4 mL/min. | Acidification with acetic acid, incubation with β-glucuronidase/sulfatase and solid-phase extraction (Oasis MCX 96-well plates, Waters, Mildford, MA, USA) | [193] |
Uro-A glucuronide | Human plasma and urine: intake of strawberries. | HPLC-MS/MS | HPLC system equipped with a diode array absorbance detector and an autosampler (Thermo Finnigan, San Jose, CA, USA) coupled to an LCQ Advantage ion trap MS (Thermo Finnigan). | Agilent ZORBAX SB C18 column (150 mm × 2.1 mm, 5 μm, Agilent Technologies, Santa Clara, CA, USA). The mobile phase consisted of (A) 1% aqueous acetic acid and (B) ACN; flow rate 0.190 mL/min. | SPE cartridge (Sep-Pak C18 Plus, Waters) | [173] |
Uro-A, Uro-B glucuronides | Plasma and urine (healthy volunteers): intake of pomegranate juice. Breast milk, plasma and urine (mothers and infants): intake of pomegranate juice. | LC-MS/MS | LCQ Classic Finnigan system (ThermoFinnigan, San Jose, CA, USA), equipped with an Agilent HP 1100 series HPLC (Santa Clara, CA, USA) system consisting of an autosampler/injector, quaternary pump, column heater, and DAD. | Symmetry C18 column (100 mm × 2.1 mm, 3.5 μm, Waters, Milford, MA, USA). The mobile phase consisted of (A) 2% formic acid in water and (B) 2% formic acid in MeOH; flow rate 0.15 mL/min. | Extraction with ACN and SPE on C18 cartridges (Waters WAT 036945). Wash with water and elution with MeOH. | [184,185] |
Uro-A | Breast milk (healthy volunteers) | HPLC and HPLC-MS/MS | HPLC (1260 Series, Agilent Technologies, Waldbronn, Germany). HPLC-MS/MS (Thermo Fisher, Waltham, MA, USA). | ZORBAX SB-C18 column (250 × 4.6 mm, 5.0 μm, Agilent Technologies, Santa Clara, CA, USA). The mobile phase consisted of (A) 1% MeOH and (B) ACN; flow rate 1.0 mL/min. | Extraction with ACN:H2O:HCOOH (80:19.9:0.1). | [202] |
Uro-A, -B, -C, -D, -M7, isoUro-A and their conjugates | Urine, feces and plasma (healthy volunteers): intake of walnuts and pomegranate extract. | UPLC-ESI-QTOF-MS | Agilent 1290 Infinity UPLC system coupled to a 6550 Accurate-Mass QTOF (Agilent Technologies, Waldbronn, Germany). | Poroshell 120 EC-C18 column (3 × 100 mm, 2.7 μm, Agilent Technologies, Waldbronn, Germany). The mobile phase consisted of (A) 0.5% aqueous formic acid (v/v) and (B) ACN; flow rate 0.5 mL/min. | Urine: dilution with water containing 0.1% formic acid. Feces: homogenization with MeOH/H2O (80:20) and 0.1% HCl. Plasma: extraction with ACN:formic acid (98:2, v/v). | [178,179] |
Uro-A, -B and conjugates | Plasma (healthy volunteers): intake of pomegranate extract. | HPLC-MS | HPLC system (Agilent Technologies, Waldbronn, Germany) equipped with a DAD and mass detector in series with a binary pump and autosampler (Agilent Technologies, Waldbronn, Germany). | LiChroCART (C18) column (25 cm × 0.4 cm, 5 μm, Merck, Darmstadt, Germany) The mobile phase consisted of (A) 5% aqueous formic acid and (B) MeOH; flow rate 1.0 mL/min. | Homogenization with MeOH:0.2 M HCl (1:1, v/v). | [186] |
Uro-A and conjugates | Plasma and urine (healthy human subjects): intake of pomegranate juice and extract. | HPLC-ESI/MS | LCQ Classic Finnigan system (ThermoFinnigan, San Jose, CA, USA), equipped with an Agilent HP 1100 series HPLC (Santa Clara, CA, USA) system consisting of an autosampler/injector, quaternary pump, column heater, and DAD. | Symmetry C18 column (100 mm × 2.1 mm, 3.5 μm, Waters, Milford, MA, USA). The mobile phase consisted of (A) 2% formic acid in water and (B) 2% formic acid in MeOH; flow rate 0.15 mL/min. | Human plasma: extraction with ACN. Human urine: dilution with H2O (2% formic acid)/methanol (9:1 v/v). | [187] |
Uro-A, -B and conjugates | Plasma and urine (healthy volunteers and subjects with an ileostomy): intake of raspberries. | HPLC-PDA-MS2 | Surveyor HPLC system with an HPLC pump, PDA detector and an autosampler (Thermo Finnigan, San Jose, CA, USA). | Synergi RP-Polar (250 × 4.6 mm, 4 μm, Phenomenex, Macclesfield, UK). The mobile phase consisted of (A) 1% formic acid in water and (B) 1% formic acid in MeOH; flow rate 1.0 mL/min. | Homogenization in MeOH/water/formic acid (95:4:1, v/v/v). | [170] |
Uro-A, -B, -M5, -M6, -M7, -C, isoUro-A and Uro-E and their conjugates | Feces and urine (healthy volunteers) and in vitro fermentation samples. | LC-UV/Vis and LC-MS/MS | A HPLC system equipped with a photo-DAD (1100 series, Agilent Technologies, Waldbronn, Germany) in series with an ion-trap MS detector (Bruker Daltonics, Bremen, Germany). | LiChroCART (C18) column (25 cm × 0.4 cm, 5 μm, Merck, Darmstadt, Germany). The mobile phase consisted of (A) 1% aqueous formic acid and (B) ACN; flow rate 1.0 mL/min. | Feces: homogenization with MeOH/DMSO/H2O (40:40:20) with 0.1% HCl. Human faecal suspensions: Extraction with ethyl acetate acidified with 1.5% formic acid. | [204] |
Uro-A, -B, -C and their conjugates | Plasma (healthy volunteers): intake of French oak wood extract (Robuvit). | HPLC-ESI-MS/MS | Perkin-Elmer series 200 HPLC system coupled to an Applied Biosystems (Foster City, CA, USA) API 3200 instrument with a Turbo ion-spray source. | Restek Ultra C18 column (100 × 2.1 mm, 3 μm). The mobile phase consisted of (A) 1% aqueous formic acid and (B) ACN with 1% formic acid; flow rate 0.3 mL/min. | HLB solid-phase extraction cartridge (OASIS, Waters, Milford, MA, USA) Wash with water, elution with MeOH. | [210] |
Uro-A, Uro-B, Uro-C, Uro-D, Uro-M5 and conjugates | Urine (healthy volunteers): intake of blackberry juice. | UPLC-DAD/ESI-Q-TOF/MS | Waters Acquity UPLC-PDA coupled to a Quadrupole Time-Of-Flight Mass Spectrometer (ESI-Q-TOF/MS) (Waters Synapt G1, Waters Corp., Milford, MA, USA). | ACQUITY UPLC C18 CSH (100 × 2.1 mm, 1.7 μm, Waters, Milford, MA, USA). The mobile phase consisted of (A) water/formic acid (99.9:0.1, v/v) and (B) ACN/formic acid (99.9/0.1 v/v); flow rate 0.4 mL/min. | SupelcleanTM LC-18 extraction cartridges (Supelco Analytical, USA). Wash with MilliQ water, elution with MeOH. | [188] |
Uro-A and conjugates | Plasma and urine (human subjects): intake of raspberry drink. | UHPLC-QQQ | UHPLC system coupled with a 6460 Series Triple Quadrupole (QQQ) (Agilent Technologies, Santa Clara, CA, USA). | Poroshell C18 Stable Bond column (2.1 × 150 mm, 2.7 μm; Agilent Technologies, Santa Clara, CA, USA). The mobile phase consisted of (A) water with 1% formic acid and (Β) ACN. | Plasma: SPE C18 cartridges (Agilent Technologies, Santa Clara, CA, USA) Urine: filtration with a 0.2 μm Polypropylene syringe filter (Whatman, Maidston, UK). | [171] |
Uro-A, -B, -C, -D and conjugates | Urine and plasma (men with prostate cancer): consumption of black raspberry products. | HPLC-MS/MS | UPLC system (Acquity UPLC, Waters Corp., Milford, MA, USA) coupled to a triple quadrupole MS (Quattro Ultima, Waters Corp., Beverley, MA, USA). | BEH C18 column (50 × 2.1 mm, 1.7 μm). The mobile phase consisted of (A) water with 1% formic acid and (Β) ACN with 1% formic acid; flow rate 0.75 mL/min. | Urine: samples were treated with β-glucuronidase/sulfatase (S9626, Sigma Chem. Co., St Louis, MO, USA). Extraction with diethyl ether. Plasma: extraction with ACN. | [172] |
4. Current Research on the Bioactivities of Urolithins on Human Health
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clifford, M.N.; Scalbert, A. Ellagitannins—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1118–1125. [Google Scholar] [CrossRef]
- Lipińska, L.; Klewicka, E.; Sójka, M. The structure, occurrence and biological activity of ellagitannins: A general review. Acta Sci. Pol. Technol. Aliment. 2014, 13, 289–299. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Putnik, P.; Kovačević, D.B.; Muchenje, V.; Barba, F.J. Sources, chemistry, and biological potential of ellagitannins and ellagic acid derivatives. Stud. Nat. Prod. Chem. 2019, 60, 189–221. [Google Scholar]
- Zhang, M.; Cui, S.; Mao, B.; Zhang, Q.; Zhao, J.; Zhang, H.; Tang, X.; Chen, W. Ellagic acid and intestinal microflora metabolite urolithin A: A review on its sources, metabolic distribution, health benefits, and biotransformation. Crit. Rev. Food Sci. Nutr. 2023, 63, 6900–6922. [Google Scholar] [CrossRef] [PubMed]
- Cerdá, B.; Periago, P.; Espín, J.C.; Tomás-Barberán, F.A. Identification of urolithin A as a metabolite produced by human colon microflora from ellagic acid and related compounds. J. Agric. Food Chem. 2005, 53, 5571–5576. [Google Scholar] [CrossRef]
- Čižmáriková, M.; Michalková, R.; Mirossay, L.; Mojžišová, G.; Zigová, M.; Bardelčíková, A.; Mojžiš, J. Ellagic acid and cancer hallmarks: Insights from experimental evidence. Biomolecules 2023, 13, 1653. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, A.K.; Kumar, R.; Jamieson, S.; Pandey, A.K.; Bishayee, A. Neuroprotective potential of ellagic acid: A critical review. Adv. Nutr. 2021, 12, 1211–1238. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liao, R.; Zhang, S.; Weng, H.; Liu, Y.; Tao, T.; Yu, F.; Li, G.; Wu, J. Promising remedies for cardiovascular disease: Natural polyphenol ellagic acid and its metabolite urolithins. Phytomedicine 2023, 116, 154867. [Google Scholar] [CrossRef]
- D’Amico, D.; Andreux, P.A.; Valdés, P.; Singh, A.; Rinsch, C.; Auwerx, J. Impact of the natural compound urolithin A on health, disease, and aging. Trends Mol. Med. 2021, 27, 687–699. [Google Scholar] [CrossRef]
- An, L.; Lu, Q.; Wang, K.; Wang, Y. Urolithins: A prospective alternative against brain aging. Nutrients 2023, 15, 3884. [Google Scholar] [CrossRef]
- Available online: https://www.mitopure.com/ (accessed on 3 April 2024).
- Yoshida, T.; Amakura, Y.; Yoshimura, M. Structural Features and Biological Properties of Ellagitannins in Some Plant Families of the Order Myrtales. Int. J. Mol. Sci. 2010, 11, 79–106. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Yoshida, T.; Hatano, T. Ellagitannins as active constituents of medicinal plants. Planta Med. 1989, 55, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Carbo, A.; Augur, C.; Prado-Barragan, L.A.; Favela-Torres, E.; Aguilar, C.N. Microbial production of ellagic acid and biodegradation of ellagitannins. Appl. Microbiol. Biotechnol. 2008, 78, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Braconnot, H. Observations sur la préparation et la purification de l’acide gallique, et sur l’existence d’unacide nouveau dans la noix de galle. Ann. Chim. Phys. 1818, 9, 181–189. [Google Scholar]
- Villalba, K.J.O.; Barka, F.V.; Pasos, C.V.; Rodríguez, P.E. Food ellagitannins: Structure, metabolomic fate, and biological properties. In Tannins-Structural Properties, Biological Properties and Current Knowledge; Aires, A., Ed.; IntechOpen: Rijeka, Croatia, 2020; pp. 26–46. ISBN 9781789847963. [Google Scholar]
- Koponen, J.M.; Happonen, A.M.; Mattila, P.H.; Törrönen, A.R. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J. Agric. Food Chem. 2007, 55, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Sójka, M.; Balawejder, M. Changes in phenolic compounds profile and glutathione status in raspberry fruit during storage in ozone-enriched atmosphere. Postharvest Biol. Technol. 2020, 168, 111277. [Google Scholar] [CrossRef]
- Sparzak, B.; Merino-Arevalo, M.; Vander Heyden, Y.; Krauze-Baranowska, M.; Majdan, M.; Fecka, I.; Głód, D.; Bączek, T. HPLC analysis of polyphenols in the fruits of Rubus idaeus L. (Rosaceae). Nat. Prod. Res. 2010, 24, 1811–1822. [Google Scholar] [CrossRef]
- Wada, L.; Ou, B. Antioxidant activity and phenolic content of Oregon caneberries. J. Agric. Food Chem. 2002, 50, 3495–3500. [Google Scholar] [CrossRef]
- Määttä-Riihinen, K.R.; Kamal-Eldin, A.; Törrönen, A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Kärenlampi, S.O.; Mykkänen, H.M.; Heinonen, I.M.; Törrönen, A.R. Ellagic acid content in berries: Influence of domestic processing and storage. Eur. Food Res. Technol. 2000, 212, 75–80. [Google Scholar] [CrossRef]
- Abe, L.T.; Lajolo, F.M.; Genovese, M.I. Potential dietary sources of ellagic acid and other antioxidants among fruits consumed in Brazil: Jabuticaba (Myrciaria jaboticaba (Vell.) Berg). J. Sci. Food Agric. 2012, 92, 1679–1687. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Romanini, E.B.; Silva, E.; Pilau, E.J.; da Costa, S.C.; Madrona, G.S. Camu-camu bioactive compounds extraction by ecofriendly sequential processes (ultrasound assisted extraction and reverse osmosis). Ultrason. Sonochem. 2020, 64, 105017. [Google Scholar] [CrossRef]
- Jourdes, M.; Michel, J.; Saucier, C.; Quideau, S.; Teissedre, P.L. Identification, amounts, and kinetics of extraction of C-glucosidic ellagitannins during wine aging in oak barrels or in stainless steel tanks with oak chips. Anal. Bioanal. Chem. 2011, 401, 1531–1539. [Google Scholar] [CrossRef]
- Amarowicz, R.; Janiak, M. Hydrolysable tannins. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 337–343. ISBN 9780128140451. [Google Scholar]
- Okuda, T.; Yoshida, T.; Hatano, T.; Ito, H. Ellagitannins renewed the concept of tannins. In Chemistry and Biology of Ellagitannins: An Underestimated Class of Bioactive Plant Polyphenols; Quideau, S., Ed.; World Scientific: Hackensack, NJ, USA, 2009; pp. 1–54. ISBN 9789812797407. [Google Scholar]
- Jokar, A.; Masoomi, F.; Sadeghpour, O.; Nassiri-Toosi, M.; Hamedi, S. Potential therapeutic applications for Terminalia chebula in Iranian traditional medicine. J. Tradit. Chin. Med. 2016, 36, 250–254. [Google Scholar] [CrossRef]
- Torgbo, S.; Rugthaworn, P.; Sukatta, U.; Sukyai, P. Biological characterization and quantification of Rambutan (Nephelium lappaceum L.) peel extract as a potential source of valuable minerals and ellagitannins for industrial applications. ACS Omega 2022, 7, 34647–34656. [Google Scholar] [CrossRef]
- Vasconcelos, M.C.B.M.; Bennett, R.N.; Quideau, S.; Jacquet, R.; Rosa, E.A.; Ferreira-Cardoso, J.V. Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Ind. Crops Prod. 2010, 31, 301–311. [Google Scholar] [CrossRef]
- Kaneshima, T.; Myoda, T.; Nakata, M.; Fujimori, T.; Toeda, K.; Nishizawa, M. Antioxidant activity of C-Glycosidic ellagitannins from the seeds and peel of camu-camu (Myrciaria dubia). LWT-Food Sci. Technol. 2016, 69, 76–81. [Google Scholar] [CrossRef]
- Santos, S.A.; Vilela, C.; Domingues, R.M.; Oliveira, C.S.; Villaverde, J.J.; Freire, C.S.; Neto, C.P.; Silvestre, A.J. Secondary metabolites from Eucalyptus grandis wood cultivated in Portugal, Brazil and South Africa. Ind. Crops Prod. 2017, 95, 357–364. [Google Scholar] [CrossRef]
- Alañón, M.E.; Castro-Vázquez, L.; Díaz-Maroto, M.C.; Hermosín-Gutiérrez, I.; Gordon, M.H.; Pérez-Coello, M.S. Antioxidant capacity and phenolic composition of different woods used in cooperage. Food Chem. 2011, 129, 1584–1590. [Google Scholar] [CrossRef]
- Tasaki, M.; Umemura, T.; Maeda, M.; Ishii, Y.; Okamura, T.; Inove, T.; Kuroiwa, Y.; Hirose, M.; Nishikawa, A. Safety assessment of ellagic acid, a food additive, in a subchronic toxicity study using F344 rats. Food Chem. Toxicol. 2008, 46, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Heber, D. Pomegranate Ellagitannins. In Herbal Medicine: Biomolecular and Clinical Aspects; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011; Chapter 10; ISBN 9781439807132. [Google Scholar]
- Buenrostro-Figueroa, J.; Mireles, M.; Ascacio-Valdés, J.A.; Aguilera-Carbo, A.; Sepúlveda, L.; Contreras-Esquivel, J.; Rodríguez-Herrera, R.; Aguilar, C.N. Enzymatic biotransformation of pomegranate ellagitannins: Initial approach to reaction conditions. Iran. J. Biotechnol. 2020, 18, 2305. [Google Scholar] [CrossRef] [PubMed]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, Y.; Yu, Q.; Shen, Y.; Zheng, Z.; Cheng, J.; Zhang, W.; Ye, Y. Exploration of the binding between ellagic acid, a potentially risky food additive, and bovine serum albumin. Food Chem. Toxicol. 2019, 134, 110867. [Google Scholar] [CrossRef] [PubMed]
- Whitley, A.C.; Stoner, G.D.; Darby, M.V.; Walle, T. Intestinal epithelial cell accumulation of the cancer preventive polyphenol ellagic acid--extensive binding to protein and DNA. Biochem. Pharmacol. 2003, 66, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef] [PubMed]
- Sangiovanni, E.; Vrhovsek, U.; Rossoni, G.; Colombo, E.; Brunelli, C.; Brembati, L.; Trivulzio, S.; Gasperotti, M.; Mattivi, F.; Bosisio, E.; et al. Ellagitannins from Rubus berries for the control of gastric inflammation: In vitro and in vivo studies. PLoS ONE 2013, 8, e71762. [Google Scholar] [CrossRef] [PubMed]
- Daniel, E.M.; Krupnick, A.S.; Heur, Y.H.; Blinzler, J.A.; Nims, R.W.; Stoner, G.D. Extraction, stability, and quantitation of ellagic acid in various fruits and nuts. J. Food Compos. Anal. 1989, 2, 338–349. [Google Scholar] [CrossRef]
- Bradish, C.M.; Yousef, G.G.; Ma, G.; Perkins-Veazie, P.; Fernandez, G.E. Anthocyanin, carotenoid, tocopherol, and ellagitannin content of red raspberry cultivars grown under field or high tunnel cultivation in the southeastern United States. J. Amer. Soc. Hort. Sci. 2015, 140, 163–171. [Google Scholar] [CrossRef]
- Mattila, P.; Kumpulainen, J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem. 2002, 50, 3660–3667. [Google Scholar] [CrossRef]
- Sójka, M.; Macierzyński, J.; Zaweracz, W.; Buczek, M. Transfer and mass balance of ellagitannins, anthocyanins, flavan-3-ols, and flavonols during the processing of red raspberries (Rubus idaeus L.) to juice. J. Agric. Food Chem. 2016, 64, 5549–5563. [Google Scholar] [CrossRef]
- Williams, D.J.; Edwards, D.; Pun, S.; Chaliha, M.; Sultanbawa, Y. Profiling ellagic acid content: The importance of form and ascorbic acid levels. Int. Food Res. J. 2014, 66, 100–106. [Google Scholar] [CrossRef]
- Diamanti, J.; Mazzoni, L.; Balducci, F.; Cappelletti, R.; Capocasa, F.; Battino, M.; Dobson, G.; Stewart, D.; Mezzetti, B. Use of wild genotypes in breeding program increases strawberry fruit sensorial and nutritional quality. J. Agric. Food Chem. 2014, 62, 3944–3953. [Google Scholar] [CrossRef]
- Gasperotti, M.; Masuero, D.; Guella, G.; Palmieri, L.; Martinatti, P.; Pojer, E.; Mattivi, F.; Vrhovsek, U. Evolution of ellagitannin content and profile during fruit ripening in Fragaria spp. J. Agric. Food Chem. 2013, 61, 8597–8607. [Google Scholar] [CrossRef]
- Aaby, K.; Wrolstad, R.E.; Ekeberg, D.; Skrede, G. Polyphenol composition and antioxidant activity in strawberry purees; Impact of achenelLevel and storage. J. Agric. Food Chem. 2007, 55, 5156–5166. [Google Scholar] [CrossRef]
- Van de Velde, F.; Pirovani, M.E.; Drago, S.R. Bioaccessibility analysis of anthocyanins and ellagitannins from blackberry at simulated gastrointestinal and colonic levels. J. Food Compos. Anal. 2018, 72, 22–31. [Google Scholar] [CrossRef]
- Bushman, B.S.; Phillips, B.; Isbell, T.; Ou, B.; Crane, J.M.; Knapp, S.J. Chemical composition of caneberry (Rubus spp.) seeds and oils and their antioxidant potential. J. Agric. Food Chem. 2004, 52, 7982–7987. [Google Scholar] [CrossRef]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef]
- Çam, M.; Hışıl, Y. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem. 2010, 123, 878–885. [Google Scholar] [CrossRef]
- Masci, A.; Coccia, A.; Lendaro, E.; Mosca, L.; Paolicelli, P.; Cesa, S. Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chem. 2016, 202, 59–69. [Google Scholar] [CrossRef]
- Romani, A.; Campo, M.; Pinelli, P. HPLC/DAD/ESI-MS analyses and anti-radical activity of hydrolyzable tannins from different vegetal species. Food Chem. 2012, 130, 214–221. [Google Scholar] [CrossRef]
- Williams, D.J.; Edwards, D.; Chaliha, M.; Sultanbawa, Y. Measuring the three forms of ellagic acid: Suitability of extraction solvents. Chem. Pap. 2016, 70, 144–152. [Google Scholar] [CrossRef]
- You, Q.; Chen, F.; Sharp, J.L.; Wang, X.; You, Y.; Zhang, C. High-performance liquid chromatography–mass spectrometry and evaporative light-scattering detector to compare phenolic profiles of muscadine grapes. J. Chromatogr. A 2012, 1240, 96–103. [Google Scholar] [CrossRef]
- Soong, Y.Y.; Barlow, P.J. Quantification of gallic acid and ellagic acid from longan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chem. 2006, 97, 524–530. [Google Scholar] [CrossRef]
- Malik, N.S.; Perez, J.L.; Lombardini, L.; Cornacchia, R.; Cisneros-Zevallos, L.; Braford, J. Phenolic compounds and fatty acid composition of organic and conventional grown pecan kernels. J. Sci. Food Agric. 2009, 89, 2207–2213. [Google Scholar] [CrossRef]
- Gonçalves, B.; Borges, O.; Costa, H.S.; Bennett, R.; Santos, M.; Silva, A.P. Metabolite composition of chestnut (Castanea sativa Mill.) upon cooking: Proximate analysis, fibre, organic acids and phenolics. Food Chem. 2010, 122, 154–160. [Google Scholar] [CrossRef]
- Abe, L.T.; Lajolo, F.M.; Genovese, M.I. Comparison of phenol content and antioxidant capacity of nuts. LWT-Food Sci. Technol. 2010, 30, 254–259. [Google Scholar] [CrossRef]
- Gong, Y.; Pegg, R.B. Separation of ellagitannin-rich phenolics from US pecans and Chinese hickory nuts using fused-core HPLC columns and their characterization. J. Agric. Food Chem. 2017, 65, 5810–5820. [Google Scholar] [CrossRef]
- Aires, A.; Carvalho, R.; Saavedra, M.J. Valorization of solid wastes from chestnut industry processing: Extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry. J. Waste Manag. 2016, 48, 457–464. [Google Scholar] [CrossRef]
- Rojas-Garbanzo, C.; Winter, J.; Montero, M.L.; Zimmermann, B.F.; Schieber, A. Characterization of phytochemicals in Costa Rican guava (Psidium friedrichsthalianum-Nied.) fruit and stability of main compounds during juice processing-(U) HPLC-DAD-ESI-TQD-MSn. J. Food Compos. Anal. 2019, 75, 26–42. [Google Scholar] [CrossRef]
- Dos Santos, W.N.L.; da Silva Sauthier, M.C.; dos Santos, A.M.P.; de Andrade Santana, D.; Azevedo, R.S.A.; da Cruz Caldas, J. Simultaneous determination of 13 phenolic bioactive compounds in guava (Psidium guajava L.) by HPLC-PAD with evaluation using PCA and Neural Network Analysis (NNA). Microchem. J. 2017, 133, 583–592. [Google Scholar] [CrossRef]
- Alezandro, M.R.; Granato, D.; Genovese, M.I. Jaboticaba (Myrciaria jaboticaba (Vell.) Berg), a Brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-mediated oxidative stress in diabetic rats. Int. Food Res. J. 2013, 54, 650–659. [Google Scholar] [CrossRef]
- Silva, R.M.; Pereira, L.D.; Véras, J.H.; do Vale, C.R.; Chen-Chen, L.; da Costa Santos, S. Protective effect and induction of DNA repair by Myrciaria cauliflora seed extract and pedunculagin on cyclophosphamide-induced genotoxicity. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016, 810, 40–47. [Google Scholar] [CrossRef]
- Pereira, L.D.; Barbosa, J.M.G.; Ribeiro da Silva, A.J.; Ferri, P.H.; Santos, S.C. Polyphenol and ellagitannin constituents of jabuticaba (Myrciaria cauliflora) and chemical variability at different stages of fruit development. J. Agric. Food Chem. 2017, 65, 1209–1219. [Google Scholar] [CrossRef]
- Fracassetti, D.; Costa, C.; Moulay, L.; Tomás-Barberán, F.A. Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chem. 2013, 139, 578–588. [Google Scholar] [CrossRef]
- Santos, S.A.; Freire, C.S.; Domingues, M.R.M.; Silvestre, A.J.; Neto, C.P. Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography–mass spectrometry. J. Agric. Food Chem. 2011, 59, 9386–9393. [Google Scholar] [CrossRef]
- Aoyama, H.; Sakagami, H.; Hatano, T. Three new flavonoids, proanthocyanidin, and accompanying phenolic constituents from Feijoa sellowiana. Biosci. Biotechnol. Biochem. 2018, 82, 31–41. [Google Scholar] [CrossRef]
- Mazzarino, L.; da Silva Pitz, H.; Lorenzen Voytena, A.P.; Dias Trevisan, A.C.; Ribeiro-Do-Valle, R.M.; Maraschin, M. Jaboticaba (Plinia peruviana) extract nanoemulsions: Development, stability, and in vitro antioxidant activity. Drug Dev. Ind. Pharm. 2018, 44, 643–651. [Google Scholar] [CrossRef]
- Karlińska, E.; Masny, A.; Cieślak, M.; Macierzyński, J.; Pecio, Ł.; Stochmal, A.; Kosmala, M. Ellagitannins in roots, leaves, and fruits of strawberry (Fragaria × ananassa Duch.) vary with developmental stage and cultivar. Sci. Hortic. 2021, 275, 109665. [Google Scholar] [CrossRef]
- Fecka, I.; Kucharska, A.Z.; Kowalczyk, A. Quantification of tannins and related polyphenols in commercial products of tormentil (Potentilla tormentilla). PCA 2015, 26, 353–366. [Google Scholar] [CrossRef]
- Kashchenko, N.I.; Olennikov, D.N. Phenolome of asian agrimony tea (Agrimonia asiatica Juz., Rosaceae): LC-MS profile, α-glucosidase inhibitory potential and stability. Foods 2020, 9, 1348. [Google Scholar] [CrossRef]
- Alañón, M.E.; Pimentel-Moral, S.; Arráez-Román, D.; Segura-Carretero, A. HPLC-DAD-Q-ToF-MS profiling of phenolic compounds from mango (Mangifera indica L.) seed kernel of different cultivars and maturation stages as a preliminary approach to determine functional and nutraceutical value. Food Chem. 2021, 337, 127764. [Google Scholar] [CrossRef]
- Dorta, E.; González, M.; Lobo, M.G.; Sánchez-Moreno, C.; de Ancos, B. Screening of phenolic compounds in by-product extracts from mangoes (Mangifera indica L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient. Int. Food Res. J. 2014, 57, 51–60. [Google Scholar] [CrossRef]
- Lestario, L.N.; Howard, L.R.; Brownmiller, C.; Stebbins, N.B.; Liyanage, R.; Lay, J.O. Changes in polyphenolics during maturation of Java plum (Syzygium cumini Lam.). Int. Food Res. J. 2017, 100, 385–391. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; Porte, A.; de Oliveira Godoy, R.L.; da Costa Souza, M.; Pacheco, S.; de Araujo Santiago, M.C.P.; Gouvêa, A.C.M.S.; da Silva de Mattos do Nascimento, L.; Borguini, R.G. Chemical characterization of Myrciaria floribunda (H. West ex Willd) fruit. Food Chem. 2018, 248, 247–252. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Arráez-Román, D.; Segura-Carretero, A.; Ferranti, P.; Nicoletti, R.; Perrotta, G.M.; Gómez-Caravaca, A.M. Establishment of pressurized-liquid extraction by response surface methodology approach coupled to HPLC-DAD-TOF-MS for the determination of phenolic compounds of myrtle leaves. Anal. Bioanal. Chem. 2018, 410, 3547–3557. [Google Scholar] [CrossRef]
- Gajera, H.P.; Gevariya, S.N.; Hirpara, D.G.; Patel, S.V.; Golakiya, B.A. Antidiabetic and antioxidant functionality associated with phenolic constituents from fruit parts of indigenous black jamun (Syzygium cumini L.) landraces. J. Food Technol. 2017, 54, 3180–3191. [Google Scholar] [CrossRef]
- Medic, A.; Jakopic, J.; Hudina, M.; Solar, A.; Veberic, R. Identification and quantification of the major phenolic constituents in Juglans regia L. peeled kernels and pellicles, using HPLC-MS/MS. Food Chem. 2021, 352, 129404. [Google Scholar] [CrossRef]
- Konczak, I.; Maillot, F.; Dalar, A. Phytochemical divergence in 45 accessions of Terminalia ferdinandiana (Kakadu plum). Food Chem. 2014, 151, 248–256. [Google Scholar] [CrossRef]
- Glabasnia, A.; Hofmann, T. Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines. J. Agric. Food Chem. 2006, 54, 3380–3390. [Google Scholar] [CrossRef]
- Tuyen, P.T.; Xuan, T.D.; Tu Anh, T.T.; Mai Van, T.; Ahmad, A.; Elzaawely, A.A.; Khanh, T.D. Weed suppressing potential and isolation of potent plant growth inhibitors from Castanea crenata Sieb. et Zucc. Molecules 2018, 23, 345. [Google Scholar] [CrossRef]
- Pellati, F.; Bruni, R.; Righi, D.; Grandini, A.; Tognolini, M.; Pio Prencipe, F.; Poli, F.; Benvenuti, S.; Del Rio, D.; Rossi, D. Metabolite profiling of polyphenols in a Terminalia chebula Retzius ayurvedic decoction and evaluation of its chemopreventive activity. J. Ethnopharmacol. 2013, 147, 277–285. [Google Scholar] [CrossRef]
- Alagan, A.; Jantan, I.; Kumolosasi, E.; Ogawa, S.; Abdullah, M.A.; Azmi, N. Protective effects of Phyllanthus amarus against lipopolysaccharide-induced neuroinflammation and cognitive impairment in rats. Front. Pharmacol. 2019, 10, 632. [Google Scholar] [CrossRef]
- Odubanjo, V.O.; Ibukun, E.O.; Oboh, G.; Adefegha, S.A. Aqueous extracts of two tropical ethnobotanicals (Tetrapleura tetraptera and Quassia undulata) improved spatial and non-spatial working memories in scopolamine-induced amnesic rats: Influence of neuronal cholinergic and antioxidant systems. Biomed. Pharmacother. 2018, 99, 198–204. [Google Scholar] [CrossRef]
- Siraj, M.A.; Shilpi, J.A.; Hossain, M.G.; Uddin, S.J.; Islam, M.K.; Jahan, I.A.; Hossain, H. Anti-inflammatory and antioxidant activity of Acalypha hispida leaf and analysis of its major bioactive polyphenols by HPLC. Adv. Pharm. Bull. 2016, 6, 275–283. [Google Scholar] [CrossRef]
- Jaramillo-García, V.; Trindade, C.; Lima, E.; Guecheva, T.N.; Villela, I.; Martinez-Lopez, W.; Corrêa, D.S.; Ferraz, A.d.B.F.; Moura, S.; Sosa, M.Q.; et al. Chemical characterization and cytotoxic, genotoxic, and mutagenic properties of Baccharis trinervis (Lam, Persoon) from Colombia and Brazil. J. Ethnopharmacol. 2018, 213, 210–220. [Google Scholar] [CrossRef]
- Hafsa, J.; Hammi, K.M.; Khedher, M.R.B.; Smach, M.A.; Charfeddine, B.; Limem, K.; Majdoub, H. Inhibition of protein glycation, antioxidant and antiproliferative activities of Carpobrotus edulis extracts. Biomed. Pharmacother. 2016, 84, 1496–1503. [Google Scholar] [CrossRef]
- Karimi, E.; Ghorbani Nohooji, M.; Habibi, M.; Ebrahimi, M.; Mehrafarin, A.; Khalighi-Sigaroodi, F. Antioxidant potential assessment of phenolic and flavonoid rich fractions of Clematis orientalis and Clematis ispahanica (Ranunculaceae). Nat. Prod. Res. 2018, 32, 1991–1995. [Google Scholar] [CrossRef]
- Cho, C.H.; Jang, H.; Lee, M.; Kang, H.; Heo, H.J.; Kim, D.O. Sea buckthorn (Hippophae rhamnoides L.) leaf extracts protect neuronal PC-12 cells from oxidative stress. J. Microbiol. Biotechnol. 2017, 27, 1257–1265. [Google Scholar] [CrossRef]
- Vieira, G.S.; Marques, A.S.; Machado, M.T.; Silva, V.M.; Hubinger, M.D. Determination of anthocyanins and non-anthocyanin polyphenols by ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI–MS) in jussara (Euterpe edulis) extracts. J. Food Sci. Technol. 2017, 54, 2135–2144. [Google Scholar] [CrossRef]
- Vu, D.C.; Vo, P.H.; Coggeshall, M.V.; Lin, C.H. Identification and characterization of phenolic compounds in black walnut kernels. J. Agric. Food Chem. 2018, 66, 4503–4511. [Google Scholar] [CrossRef]
- de Britto Policarpi, P.; Turcatto, L.; Demoliner, F.; Ferrari, R.A.; Bascuñan, V.L.A.F.; Ramos, J.C.; Jachmanián, J.; Vitali, L.; Micke, G.A.; Block, J.M. Nutritional potential, chemical profile and antioxidant activity of Chichá (Sterculia striata) nuts and its by-products. Food Res. Int. 2018, 106, 736–744. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef]
- Cerdá, B.; Espín, J.C.; Parra, S.; Martínez, P.; Tomás-Barberán, F.A. The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy-6H-dibenzopyran-6-one derivatives by the colonic microflora of healthy humans. Eur. J. Nutr. 2004, 43, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Borges, G.; Mullen, W.; Crozier, A. Comparison of the polyphenolic composition and antioxidant activity of European commercial fruit juices. Food Funct. 2010, 1, 73. [Google Scholar] [CrossRef] [PubMed]
- Vegara, S.; Martí, N.; Lorente, J.; Coll, L.; Streitenberger, S.; Valero, M.; Saura, D. Chemical guide parameters for Punica granatum cv.‘Mollar’fruit juices processed at industrial scale. Food Chem. 2014, 147, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Inada, K.O.P.; Duarte, P.A.; Lapa, J.; Miguel, M.A.L.; Monteiro, M. Jabuticaba (Myrciaria jaboticaba) juice obtained by steam-extraction: Phenolic compound profile, antioxidant capacity, microbiological stability, and sensory acceptability. J. Food Sci. Technol. 2018, 55, 52–61. [Google Scholar] [CrossRef]
- Teixeira, L.L.; Costa, G.R.; Dörr, F.A.; Ong, T.P.; Pinto, E.; Lajolo, F.M.; Hassimotto, N.M.A. Potential Antiproliferative Activity of Polyphenol Metabolites against Human Breast Cancer Cells and Their Urine Excretion Pattern in Healthy Subjects Following Acute Intake of a Polyphenol-Rich Juice of Grumixama (Eugenia brasiliensis Lam.). Food Funct. 2017, 8, 2266–2274. [Google Scholar] [CrossRef]
- Lee, J.H.; Talcott, S.T. Ellagic acid and ellagitannins affect on sedimentation in muscadine juice and wine. J. Agric. Food Chem. 2002, 50, 3971–3976. [Google Scholar] [CrossRef]
- Garcia-Estevez, I.; Escribano-Bailón, M.T.; Rivas-Gonzalo, J.C.; Alcalde-Eon, C. Validation of a mass spectrometry method to quantify oak ellagitannins in wine samples. J. Agric. Food Chem. 2012, 60, 1373–1379. [Google Scholar] [CrossRef]
- Sanz, M.; de Simón, B.F.; Esteruelas, E.; Muñoz, Á.M.; Cadahía, E.; Hernández, M.T.; Estrella, I.; Martinez, J. Polyphenols in red wine aged in acacia (Robinia pseudoacacia) and oak (Quercus petraea) wood barrels. Anal. Chim. Acta 2012, 732, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Mena, P.; Ascacio-Valdés, J.A.; Gironés-Vilaplana, A.; Del Rio, D.; Moreno, D.A.; García-Viguera, C. Assessment of pomegranate wine lees as a valuable source for the recovery of (poly) phenolic compounds. Food Chem. 2014, 145, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Alexandri, M.; Papapostolou, H.; Vlysidis, A.; Gardeli, C.; Komaitis, M.; Papanikolaou, S.; Koutinas, A.A. Extraction of phenolic compounds and succinic acid production from spent sulphite liquor. Chem. Technol. Biotechnol. 2016, 91, 2751–2760. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Viskelis, P.; Bobinas, Č.; Mieželienė, A.; Alenčikienė, G.; Venskutonis, P.R. Raspberry marc extracts increase antioxidative potential, ellagic acid, ellagitannin and anthocyanin concentrations in fruit purees. LWT-Food Sci. Technol. 2016, 66, 460–467. [Google Scholar] [CrossRef]
- Sójka, M.; Klimczak, E.; Macierzyński, J.; Kołodziejczyk, K. Nutrient and polyphenolic composition of industrial strawberry press cake. Eur. Food Res. Technol. 2013, 237, 995–1007. [Google Scholar] [CrossRef]
- Da Silva Pinto, M.; Lajolo, F.M.; Genovese, M.I. Bioactive compounds and antioxidant capacity of strawberry jams. Plant Foods Hum. Nutr. 2007, 62, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Markom, M.; Hasan, M.; Daud, W.R.W.; Singh, H.; Jahim, J.M. Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: Effects of solvents and extraction methods. Sep. Purif. Technol. 2007, 52, 487–496. [Google Scholar] [CrossRef]
- Widyawati, P.S.; Dwi, T.; Budianta, W.; Kusuma, F.A.; Wijaya, E.L. Difference of Solvent Polarity to Phytochemical Content and Antioxidant Activity of Pluchea indicia Less Leaves Extracts. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 850–855. [Google Scholar]
- Arapitsas, P. Hydrolyzable tannin analysis in food. Food Chem. 2012, 135, 1708–1717. [Google Scholar] [CrossRef]
- Theocharis, G.; Andlauer, W. Innovative microwave-assisted hydrolysis of ellagitannins and quantification as ellagic acid equivalents. Food Chem. 2013, 138, 2430–2434. [Google Scholar] [CrossRef]
- Abdulla, R.; Mansur, S.; Lai, H.; Ubul, A.; Sun, G.; Huang, G.; Aisa, H.A. Qualitative analysis of polyphenols in macroporous resin pretreated pomegranate husk extract by HPLC-QTOF-MS. Phytochem. Anal. 2017, 28, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Dong, X.; Guo, M. Phenolic profiling of Duchesnea Indica combining macroporous resin chromatography (MRC) with HPLC-ESI-MS/MS and ESI-IT-MS. Molecules 2015, 20, 22463–22475. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, O.D.; Kulkarni, Y.A. Mini-review of analytical methods used in quantification of ellagic acid. Rev. Anal. Chem. 2020, 39, 31–44. [Google Scholar] [CrossRef]
- Furuuchi, R.; Yokoyama, T.; Watanabe, Y.; Hirayama, M. Identification and quantification of short oligomeric proanthocyanidins and other polyphenols in boysenberry seeds and juice. J. Agric. Food Chem. 2011, 59, 3738–3746. [Google Scholar] [CrossRef] [PubMed]
- Brighenti, V.; Groothuis, S.F.; Prencipe, F.P.; Amir, R.; Benvenuti, S.; Pellati, F. Metabolite fingerprinting of Punica granatum L. (pomegranate) polyphenols by means of high-performance liquid chromatography with diode array and electrospray ionization-mass spectrometry detection. J. Chromatogr. A 2017, 1480, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Caravaca, A.M.; Verardo, V.; Toselli, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Caboni, M.F. Determination of the major phenolic compounds in pomegranate juices by HPLC–DAD–ESI-MS. J. Agric. Food Chem. 2013, 61, 5328–5337. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Kontoudakis, N.; Canals, J.M.; García-Romero, E.; Gómez-Alonso, S.; Zamora, F.; Hermosín-Gutiérrez, I. Improved method for the extraction and chromatographic analysis on a fused-core column of ellagitannins found in oak-aged wine. Food Chem. 2017, 226, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Godiyal, S.; Laddha, K. Validated high-performance thin-layer chromatographic method for quantification of gallic acid and ellagic acid in fruits of Terminalia chebula, Phyllanthus emblica, and Quercus infectoria. J. Sep. Sci. 2023, 46, 2200991. [Google Scholar] [CrossRef] [PubMed]
- García-Villalba, R.; Espín, J.C.; Aaby, K.; Alasalvar, C.; Heinonen, M.; Jacobs, G.; Voorspoels, S.; Koivumäki, T.; Kroon, P.A.; Pelvan, E.; et al. Validated method for the characterization and quantification of extractable and nonextractable ellagitannins after acid hydrolysis in pomegranate fruits, juices, and extracts. J. Agric. Food Chem. 2015, 63, 6555–6566. [Google Scholar] [CrossRef]
- Topalović, A.; Knežević, M.; Gačnik, S.; Mikulic-Petkovsek, M. Detailed chemical composition of juice from autochthonous pomegranate genotypes (Punica granatum L.) grown in different locations in Montenegro. Food Chem. 2020, 330, 127261. [Google Scholar] [CrossRef]
- Da Silva Pinto, M.; Lajolo, F.M.; Genovese, M.I. Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria × Ananassa Duch.). Food Chem. 2008, 107, 1629–1635. [Google Scholar] [CrossRef]
- Hejduk, A.; Sójka, M.; Klewicki, R. Stability of ellagitannins in processing products of selected Fragaria fruit during 12 months of storage. Food Sci. Nutr. 2023, 11, 1354–1366. [Google Scholar] [CrossRef] [PubMed]
- Gasperotti, M.; Masuero, D.; Vrhovsek, U.; Guella, G.; Mattivi, F. Profiling and accurate quantification of Rubus ellagitannins and ellagic acid conjugates using direct UPLC-Q-TOF HDMS and HPLC-DAD analysis. J. Agric. Food Chem. 2010, 58, 4602–4616. [Google Scholar] [CrossRef] [PubMed]
- Gudej, J.; Tomczyk, M. Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch. Pharm. Res. 2004, 27, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Richard-Dazeur, C.; Jacolot, P.; Niquet-Léridon, C.; Goethals, L.; Barbezier, N.; Anton, P.M. HPLC-DAD Optimization of quantification of vescalagin, gallic and ellagic acid in chestnut tannins. Heliyon 2023, 9, e18993. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, G.; Demirbag, C.; Bahsi, I.; Ozgul, L.; Alkaya, D.B.; Onurlu, H.I.; Seyhan, S.A. Determination of Ellagic Acid in the Wastes of Walnut, Chestnut, and Pomegranate Grown in Turkey. ACS Symposium Series; Jayaprakasha, G.K., Patil, B.S., Gattuso, G., Eds.; American Chemical Society: Washington, DC, USA, 2018, 2018; Volume 1286, pp. 81–103. ISBN 9780841232969. [Google Scholar]
- Kumar, N.; Pratibha; Neeraj; Sami, R.; Khojah, E.; Aljahani, A.H.; Al-Mushhin, A.A.M. Effects of drying methods and solvent extraction on quantification of major bioactive compounds in pomegranate peel waste using HPLC. Sci. Rep. 2022, 12, 8000. [Google Scholar] [CrossRef] [PubMed]
- Aaby, K.; Ekeberg, D.; Skrede, G. Characterization of phenolic compounds in strawberry (Fragaria × Ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J. Agric. Food Chem. 2007, 55, 4395–4406. [Google Scholar] [CrossRef] [PubMed]
- Yisimayili, Z.; Abdulla, R.; Tian, Q.; Wang, Y.; Chen, M.; Sun, Z.; Li, Z.; Liu, F.; Aisa, H.A.; Huang, C. A comprehensive study of pomegranate flowers polyphenols and metabolites in rat biological samples by high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2019, 1604, 460472. [Google Scholar] [CrossRef]
- Michel, J.; Jourdes, M.; Silva, M.A.; Giordanengo, T.; Mourey, N.; Teissedre, P.-L. Impact of concentration of ellagitannins in oak wood on their levels and organoleptic influence in red wine. J. Agric. Food Chem. 2011, 59, 5677–5683. [Google Scholar] [CrossRef]
- Kool, M.M.; Comeskey, D.J.; Cooney, J.M.; McGhie, T.K. Structural identification of the main ellagitannins of a boysenberry (Rubus loganbaccus × baileyanus Britt.) extract by LC–ESI-MS/MS, MALDI-TOF-MS and NMR spectroscopy. Food Chem. 2010, 119, 1535–1543. [Google Scholar] [CrossRef]
- Akter, S.; Hong, H.; Netzel, M.; Tinggi, U.; Fletcher, M.; Osborne, S.; Sultanbawa, Y. Determination of ellagic acid, punicalagin, and castalagin from Terminalia ferdinandiana (Kakadu Plum) by a validated UHPLC-PDA-MS/MS methodology. Food Anal. Methods 2021, 14, 2534–2544. [Google Scholar] [CrossRef]
- Kula, M.; Majdan, M.; Głód, D.; Krauze-Baranowska, M. Phenolic composition of fruits from different cultivars of red and black raspberries grown in poland. J. Food Compos. Anal. 2016, 52, 74–82. [Google Scholar] [CrossRef]
- Regueiro, J.; Sánchez-González, C.; Vallverdú-Queralt, A.; Simal-Gándara, J.; Lamuela-Raventós, R.; Izquierdo-Pulido, M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap–orbitrap mass spectrometry. Food Chem. 2014, 152, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, J.; Yang, Z.; Gao, F.; Qi, P.; Li, X.; Zhu, F.; Li, J.; Zhang, J. Determination of ellagic acid in wine by solid-phase extraction–ultra-high performance liquid chromatography–tandem mass spectrometry. Food Anal. Methods 2019, 12, 1103–1110. [Google Scholar] [CrossRef]
- Shahzad, M.N.; Ahmad, S.; Tousif, M.I.; Ahmad, I.; Rao, H.; Ahmad, B.; Basit, A. Profiling of phytochemicals from aerial parts of Terminalia Neotaliala using LC-ESI-MS2 and determination of antioxidant and enzyme inhibition activities. PLoS ONE 2022, 17, e0266094. [Google Scholar] [CrossRef] [PubMed]
- Khatib, M.; Campo, M.; Bellumori, M.; Cecchi, L.; Vignolini, P.; Innocenti, M.; Mulinacci, N. Tannins from different parts of the chestnut trunk (Castanea sativa Mill.): A green and effective extraction method and their profiling by high-performance liquid chromatography-diode array detector-mass spectrometry. ACS Food Sci. Technol. 2023, 3, 1903–1912. [Google Scholar] [CrossRef]
- Seyhan, S.; Yalcin, G.; Seyhan, S.A. The extraction and determination of ellagic acid and resveratrol in blueberry species by HPLC-DAD and LC-MS/MS. J. Res. Pharm. 2023, 27, 311–320. [Google Scholar] [CrossRef]
- De Andrade Neves, N.; César Stringheta, P.; Ferreira Da Silva, I.; García-Romero, E.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Identification and quantification of phenolic composition from different species of Jabuticaba (Plinia Spp.) by HPLC-DAD-ESI/MSn. Food Chem. 2021, 355, 129605. [Google Scholar] [CrossRef] [PubMed]
- Oracz, J.; Żyżelewicz, D.; Pacholczyk-Sienicka, B. UHPLC-DAD-ESI-HRMS/MS profile of phenolic compounds in northern red oak (Quercus rubra L., Syn. Q. Borealis F. Michx) seeds and its transformation during thermal processing. Ind. Crops Prod. 2022, 189, 115860. [Google Scholar] [CrossRef]
- Finimundy, T.C.; Karkanis, A.; Fernandes, Â.; Petropoulos, S.A.; Calhelha, R.; Petrović, J.; Soković, M.; Rosa, E.; Barros, L.; Ferreira, I.C.F.R. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chem. 2020, 327, 127043. [Google Scholar] [CrossRef]
- Zhou, B.; Wu, Z.; Li, X.; Zhang, J.; Hu, X. Analysis of ellagic acid in pomegranate rinds by capillary electrophoresis and high-performance liquid chromatography. Phytochem. Anal. 2008, 19, 86–89. [Google Scholar] [CrossRef]
- Costa, E.V.; Lima, D.L.D.; Evtyugin, D.V.; Esteves, V.I. Development and application of a capillary electrophoresis method for the determination of ellagic acid in E. Globulus wood and in filtrates from E. Globulus kraft pulp. Wood Sci. Technol. 2014, 48, 99–108. [Google Scholar] [CrossRef]
- Spisso, A.; Gomez, F.J.V.; Fernanda Silva, M. Determination of ellagic acid by capillary electrophoresis in Argentinian wines. Electrophoresis 2018, 39, 1621–1627. [Google Scholar] [CrossRef]
- Wojciechowska, O.; Kujawska, M. Urolithin A in health and diseases: Prospects for Parkinson’s disease management. Antioxidants 2023, 12, 1479. [Google Scholar] [CrossRef] [PubMed]
- Raimundo, A.F.; Ferreira, S.; Tomás-Barberán, F.A.; Santos, C.N.; Menezes, R. Urolithins: Diet-derived bioavailable metabolites to tackle diabetes. Nutrients 2021, 13, 4285. [Google Scholar] [CrossRef] [PubMed]
- García-Villalba, R.; Tomás-Barberán, F.A.; Iglesias-Aguirre, C.E.; Giménez-Bastida, J.A.; González-Sarrías, A.; Selma, M.V.; Espín, J.C. Ellagitannins, urolithins, and neuroprotection: Human evidence and the possible link to the gut microbiota. Mol. Asp. Med. 2023, 89, 101109. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; González-Sarrías, A.; García-Villalba, R.; Núñez-Sánchez, M.A.; Selma, M.V.; García-Conesa, M.T.; Espín, J.C. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol. Nutr. Food Res. 2017, 61, 1500901. [Google Scholar] [CrossRef]
- García-Villalba, R.; Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Identification of novel urolithin metabolites in human feces and urine after the intake of a pomegranate extract. J. Agric. Food Chem. 2019, 67, 11099–11107. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; García-Villalba, R.; González-Sarrías, A.; Selma, M.V.; Espín, J.C. Ellagic acid metabolism by human gut microbiota: Consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J. Agric. Food Chem. 2014, 62, 6535–6538. [Google Scholar] [CrossRef]
- Romo-Vaquero, M.; García-Villalba, R.; González-Sarrías, A.; Beltrán, D.; Tomás-Barberán, F.A.; Espín, J.C.; Selma, M.V. Interindividual variability in the human metabolism of ellagic acid: Contribution of Gordonibacter to urolithin production. J. Funct. Foods 2015, 17, 785–791. [Google Scholar] [CrossRef]
- Cortés-Martín, A.; García-Villalba, R.; González-Sarrías, A.; Romo-Vaquero, M.; Loria-Kohen, V.; Ramírez-de-Molina, A.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. The gut microbiota urolithin metabotypes revisited: The human metabolism of ellagic acid is mainly determined by aging. Food Funct. 2018, 9, 4100–4106. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Aguirre, C.E.; García-Villalba, R.; Beltrán, D.; Frutos-Lisón, M.D.; Espín, J.C.; Tomás-Barberán, F.A.; Selma, M.V. Gut bacteria involved in ellagic acid metabolism to yield human urolithin metabotypes revealed. J. Agric. Food Chem. 2023, 71, 4029–4035. [Google Scholar] [CrossRef]
- Beltrán, D.; Frutos-Lisón, M.D.; García-Villalba, R.; Yuste, J.E.; García, V.; Espín, J.C.; Selma, M.V.; Tomás-Barberán, F.A. NMR spectroscopic identification of urolithin G, a novel trihydroxy urolithin produced by human intestinal Enterocloster Species. J. Agric. Food Chem. 2023, 71, 11921–11928. [Google Scholar] [CrossRef]
- Milala, J.; Kosmala, M.; Karlińska, E.; Juśkiewicz, J.; Zduńczyk, Z.; Fotschki, B. Ellagitannins from strawberries with different degrees of polymerization showed different metabolism through gastrointestinal tract of rats. J. Agric. Food Chem. 2017, 65, 10738–10748. [Google Scholar] [CrossRef]
- Żary-Sikorska, E.; Kosmala, M.; Milala, J.; Fotschki, B.; Ognik, K.; Juśkiewicz, J. Concentrations of blood serum and urinal ellagitannin metabolites depend largely on the post-intake time and duration of strawberry phenolics ingestion in rats. Pol. J. Food Nutr. Sci. 2019, 69, 379–386. [Google Scholar] [CrossRef]
- Lin, I.-C.; Wu, J.-Y.; Fang, C.-Y.; Wang, S.-C.; Liu, Y.-W.; Ho, S.-T. Absorption and metabolism of urolithin A and ellagic acid in mice and their cytotoxicity in human colorectal cancer cells. Evid. Based Complement. Alternat. Med. 2023, 2023, 8264716. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Aronson, W.J.; Zhang, Y.; Henning, S.M.; Moro, A.; Lee, R.; Sartippour, M.; Harris, D.M.; Rettig, M.; Suchard, M.A.; et al. Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J. Agric. Food Chem. 2007, 55, 7732–7737. [Google Scholar] [CrossRef]
- González-Barrio, R.; Truchado, P.; Ito, H.; Espín, J.C.; Tomás-Barberán, F.A. UV and MS Identification of urolithins and nasutins, the bioavailable metabolites of ellagitannins and ellagic acid in different mammals. J. Agric. Food Chem. 2011, 59, 1152–1162. [Google Scholar] [CrossRef]
- González-Barrio, R.; Truchado, P.; García-Villalba, R.; Hervás, G.; Frutos, P.; Espín, J.C.; Tomás-Barberán, F.A. Metabolism of oak leaf ellagitannins and urolithin production in beef cattle. J. Agric. Food Chem. 2012, 60, 3068–3077. [Google Scholar] [CrossRef]
- Espín, J.C.; González-Barrio, R.; Cerdá, B.; López-Bote, C.; Rey, A.I.; Tomás-Barberán, F.A. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J. Agric. Food Chem. 2007, 55, 10476–10485. [Google Scholar] [CrossRef]
- Cerdá, B.; Tomás-Barberán, F.A.; Espín, J.C. Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: Identification of biomarkers and individual variability. J. Agric. Food Chem. 2005, 53, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fan, J.; Xiao, D.; Edirisinghe, I.; Burton-Freeman, B.M.; Sandhu, A.K. Pharmacokinetic evaluation of red raspberry (poly)phenols from two doses and association with metabolic indices in adults with prediabetes and insulin resistance. J. Agric. Food Chem. 2021, 69, 9238–9248. [Google Scholar] [CrossRef]
- Moreno Uclés, R.; González-Sarrías, A.; Espín, J.C.; Tomás-Barberán, F.A.; Janes, M.; Cheng, H.; Finley, J.; Greenway, F.; Losso, J.N. Effects of red raspberry polyphenols and metabolites on the biomarkers of inflammation and insulin resistance in type 2 diabetes: A pilot study. Food Funct. 2022, 13, 5166–5176. [Google Scholar] [CrossRef] [PubMed]
- González-Barrio, R.; Borges, G.; Mullen, W.; Crozier, A. Bioavailability of anthocyanins and ellagitannins following consumption of raspberries by healthy humans and subjects with an ileostomy. J. Agric. Food Chem. 2010, 58, 3933–3939. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, A.; Sandhu, A.K.; Edirisinghe, I.; Burton-Freeman, B.M. Functional deficits in gut microbiome of young and middle-aged adults with prediabetes apparent in metabolizing bioactive (poly)phenols. Nutrients 2020, 12, 3595. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.M.; Grainger, E.M.; Thomas-Ahner, J.M.; Hinton, A.; Gu, J.; Riedl, K.; Vodovotz, Y.; Abaza, R.; Schwartz, S.J.; Clinton, S.K. Dose-dependent increases in ellagitannin metabolites as biomarkers of intake in humans consuming standardized black raspberry food products designed for clinical trials. Mol. Nutr. Food Res. 2020, 64, 1900800. [Google Scholar] [CrossRef]
- Henning, S.M.; Seeram, N.P.; Zhang, Y.; Li, L.; Gao, K.; Lee, R.-P.; Wang, D.C.; Zerlin, A.; Karp, H.; Thames, G.; et al. Strawberry consumption is associated with increased antioxidant capacity in serum. J. Med. Food 2010, 13, 116–122. [Google Scholar] [CrossRef]
- Sandhu, A.K.; Miller, M.G.; Thangthaeng, N.; Scott, T.M.; Shukitt-Hale, B.; Edirisinghe, I.; Burton-Freeman, B. Metabolic fate of strawberry polyphenols after chronic intake in healthy older adults. Food Funct. 2018, 9, 96–106. [Google Scholar] [CrossRef]
- González-Sarrías, A.; Giménez-Bastida, J.A.; García-Conesa, M.T.; Gómez-Sánchez, M.B.; García-Talavera, N.V.; Gil-Izquierdo, A.; Sánchez-Álvarez, C.; Fontana-Compiano, L.O.; Morga-Egea, J.P.; Pastor-Quirante, F.A.; et al. Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. Mol. Nutr. Food Res. 2010, 54, 311–322. [Google Scholar] [CrossRef]
- Pfundstein, B.; Haubner, R.; Würtele, G.; Gehres, N.; Ulrich, C.M.; Owen, R.W. Pilot walnut intervention study of urolithin bioavailability in human volunteers. J. Agric. Food Chem. 2014, 62, 10264–10273. [Google Scholar] [CrossRef]
- Cortés-Martín, A.; García-Villalba, R.; García-Mantrana, I.; Rodríguez-Varela, A.; Romo-Vaquero, M.; Collado, M.C.; Tomás-Barberán, F.A.; Espín, J.C.; Selma, M.V. Urolithins in human breast milk after walnut intake and kinetics of Gordonibacter colonization in newly born: The role of mothers’ urolithin metabotypes. J. Agric. Food Chem. 2020, 68, 12606–12616. [Google Scholar] [CrossRef]
- García-Villalba, R.; Espín, J.C.; Tomás-Barberán, F.A. Chromatographic and spectroscopic characterization of urolithins for their determination in biological samples after the intake of foods containing ellagitannins and ellagic acid. J. Chromatogr. A 2016, 1428, 162–175. [Google Scholar] [CrossRef] [PubMed]
- García-Mantrana, I.; Calatayud, M.; Romo-Vaquero, M.; Espín, J.C.; Selma, M.V.; Collado, M.C. Urolithin metabotypes can determine the modulation of gut microbiota in healthy individuals by tracking walnuts consumption over three days. Nutrients 2019, 11, 2483. [Google Scholar] [CrossRef] [PubMed]
- Van Der Hooft, J.J.J.; De Vos, R.C.H.; Mihaleva, V.; Bino, R.J.; Ridder, L.; De Roo, N.; Jacobs, D.M.; Van Duynhoven, J.P.M.; Vervoort, J. Structural elucidation and quantification of phenolic conjugates present in human urine after tea intake. Anal. Chem. 2012, 84, 7263–7271. [Google Scholar] [CrossRef]
- Singh, A.; D’Amico, D.; Andreux, P.A.; Dunngalvin, G.; Kern, T.; Blanco-Bose, W.; Auwerx, J.; Aebischer, P.; Rinsch, C. Direct supplementation with urolithin A overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the population. Eur. J. Clin. Nutr. 2022, 76, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Martín, A.; Iglesias-Aguirre, C.E.; Meoro, A.; Selma, M.V.; Espín, J.C. Pharmacological therapy determines the gut microbiota modulation by a pomegranate extract nutraceutical in metabolic syndrome: A randomized clinical trial. Mol. Nutr. Food Res. 2021, 65, 2001048. [Google Scholar] [CrossRef]
- Nuñez-Sánchez, M.A.; García-Villalba, R.; Monedero-Saiz, T.; García-Talavera, N.V.; Gómez-Sánchez, M.B.; Sánchez-Álvarez, C.; García-Albert, A.M.; Rodríguez-Gil, F.J.; Ruiz-Marín, M.; Pastor-Quirante, F.A.; et al. Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients. Mol. Nutr. Food Res. 2014, 58, 1199–1211. [Google Scholar] [CrossRef]
- Seeram, N.P.; Henning, S.M.; Zhang, Y.; Suchard, M.; Li, Z.; Heber, D. Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 h. J. Nutr. 2006, 136, 2481–2485. [Google Scholar] [CrossRef]
- Henning, S.M.; Yang, J.; Lee, R.-P.; Huang, J.; Thames, G.; Korn, M.; Ben-Nissan, D.; Heber, D.; Li, Z. Pomegranate juice alters the microbiota in breast milk and infant stool: A pilot study. Food Funct. 2022, 13, 5680–5689. [Google Scholar] [CrossRef]
- Mertens-Talcott, S.U.; Jilma-Stohlawetz, P.; Rios, J.; Hingorani, L.; Derendorf, H. Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum L.) polyphenols after ingestion of a standardized extract in healthy human volunteers. J. Agric. Food Chem. 2006, 54, 8956–8961. [Google Scholar] [CrossRef]
- Seeram, N.P.; Zhang, Y.; McKeever, R.; Henning, S.M.; Lee, R.; Suchard, M.A.; Li, Z.; Chen, S.; Thames, G.; Zerlin, A.; et al. Pomegranate juice and extracts provide similar levels of plasma and urinary ellagitannin metabolites in human subjects. J. Med. Food 2008, 11, 390–394. [Google Scholar] [CrossRef] [PubMed]
- García-Muñoz, C.; Hernández, L.; Pérez, A.; Vaillant, F. Diversity of urinary excretion patterns of main ellagitannins’ colonic metabolites after ingestion of tropical highland blackberry (Rubus adenotrichus) Juice. Food Res. Inter. 2014, 55, 161–169. [Google Scholar] [CrossRef]
- Gu, J.; Thomas-Ahner, J.M.; Riedl, K.M.; Bailey, M.T.; Vodovotz, Y.; Schwartz, S.J.; Clinton, S.K. Dietary black raspberries impact the colonic microbiome and phytochemical metabolites in mice. Mol. Nutr. Food Res. 2019, 63, 1800636. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lee, P.-K.; Wong, H.-C.; Zhao, D. Oral supplementation of Gordonibacter Urolithinfaciens promotes ellagic acid metabolism and urolithin bioavailability in mice. Food Chem. 2024, 437, 137953. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, M.; Jourdes, M.; Kurpik, M.; Szulc, M.; Szaefer, H.; Chmielarz, P.; Kreiner, G.; Krajka-Kuźniak, V.; Mikołajczak, P.Ł.; Teissedre, P.-L.; et al. Neuroprotective effects of pomegranate juice against Parkinson’s disease and presence of ellagitannins-derived metabolite—Urolithin A—In the brain. Int. J. Mol. Sci. 2019, 21, 202. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.M.; Grainger, E.M.; Thomas-Ahner, J.M.; Hinton, A.; Gu, J.; Riedl, K.M.; Vodovotz, Y.; Abaza, R.; Schwartz, S.J.; Clinton, S.K. Application of a low polyphenol or low ellagitannin dietary intervention and its impact on ellagitannin metabolism in men. Mol. Nutr. Food Res. 2017, 61, 1600224. [Google Scholar] [CrossRef] [PubMed]
- Tulipani, S.; Urpi-Sarda, M.; García-Villalba, R.; Rabassa, M.; López-Uriarte, P.; Bulló, M.; Jáuregui, O.; Tomás-Barberán, F.; Salas-Salvadó, J.; Espín, J.C.; et al. Urolithins are the main urinary microbial-derived phenolic metabolites discriminating a moderate consumption of nuts in free-living subjects with diagnosed metabolic syndrome. J. Agric. Food Chem. 2012, 60, 8930–8940. [Google Scholar] [CrossRef] [PubMed]
- Jurgoński, A.; Juśkiewicz, J.; Fotschki, B.; Kołodziejczyk, K.; Milala, J.; Kosmala, M.; Grzelak-Błaszczyk, K.; Markiewicz, L. Metabolism of strawberry mono- and dimeric ellagitannins in rats fed a diet containing fructo-oligosaccharides. Eur. J. Nutr. 2017, 56, 853–864. [Google Scholar] [CrossRef]
- Kosmala, M.; Jurgoński, A.; Juśkiewicz, J.; Karlińska, E.; Macierzyński, J.; Rój, E.; Zduńczyk, Z. Chemical composition of blackberry press cake, polyphenolic extract, and defatted seeds, and their effects on cecal fermentation, bacterial metabolites, and blood lipid profile in rats. J. Agric. Food Chem. 2017, 65, 5470–5479. [Google Scholar] [CrossRef]
- Mosele, J.I.; Gosalbes, M.; Macià, A.; Rubió, L.; Vázquez-Castellanos, J.F.; Jiménez Hernández, N.; Moya, A.; Latorre, A.; Motilva, M. Effect of daily intake of pomegranate juice on fecal microbiota and feces metabolites from healthy volunteers. Mol. Nutr. Food Res. 2015, 59, 1942–1953. [Google Scholar] [CrossRef]
- Li, Z.; Henning, S.M.; Lee, R.-P.; Lu, Q.-Y.; Summanen, P.H.; Thames, G.; Corbett, K.; Downes, J.; Tseng, C.-H.; Finegold, S.M.; et al. Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food Funct. 2015, 6, 2487–2495. [Google Scholar] [CrossRef]
- Aichinger, G.; Stevanoska, M.; Beekmann, K.; Sturla, S.J. Physiologically-based pharmacokinetic modeling of the postbiotic supplement urolithin A predicts its bioavailability is orders of magnitude lower than concentrations that induce toxicity, but also neuroprotective effects. Mol. Nutr. Food Res. 2023, 67, 2300009. [Google Scholar] [CrossRef] [PubMed]
- Dacrema, M.; Sommella, E.; Santarcangelo, C.; Bruno, B.; Marano, M.G.; Insolia, V.; Saviano, A.; Campiglia, P.; Stornaiuolo, M.; Daglia, M. Metabolic profiling, in vitro bioaccessibility and in vivo bioavailability of a commercial bioactive Epilobium angustifolium L. extract. Biomed. Pharmacother. 2020, 131, 110670. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Mondal, G.; Khan, W.; Gurley, B.J.; Yates, C.R. Development of a liquid chromatography-tandem mass spectrometry (LC–MS/MS) method for characterizing pomegranate extract pharmacokinetics in humans. J. Pharm. Biomed. Anal. 2023, 233, 115477. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Li, K.; Zhang, H.; Li, Y.; Han, L.; Liu, H.; Wang, M. The profile of buckwheat tannins based on widely targeted metabolome analysis and pharmacokinetic study of ellagitannin metabolite urolithin A. LWT-Food Sci. Technol. 2022, 156, 113069. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S.; Ye, Q.; Hou, X.; Yang, G.; Lu, J.; Hai, Y.; Shen, J.; Fang, Y. A novel streptococcus thermophilus FUA329 isolated from human breast milk capable of producing urolithin A from ellagic acid. Foods 2022, 11, 3280. [Google Scholar] [CrossRef]
- Quatrin, A.; Rampelotto, C.; Pauletto, R.; Maurer, L.H.; Nichelle, S.M.; Klein, B.; Rodrigues, R.F.; Maróstica Junior, M.R.; Fonseca, B.D.S.; De Menezes, C.R.; et al. Bioaccessibility and catabolism of phenolic compounds from Jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. J. Funct. Foods 2020, 65, 103714. [Google Scholar] [CrossRef]
- García-Villalba, R.; Beltrán, D.; Espín, J.C.; Selma, M.V.; Tomás-Barberán, F.A. Time course production of urolithins from ellagic acid by human gut microbiota. J. Agric. Food Chem. 2013, 61, 8797–8806. [Google Scholar] [CrossRef]
- García-Villalba, R.; Beltrán, D.; Frutos, M.D.; Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Metabolism of different dietary phenolic compounds by the urolithin-producing human-gut bacteria Gordonibacter urolithinfaciens and Ellagibacter isourolithinifaciens. Food Funct. 2020, 11, 7012–7022. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, S.; Mao, B.; Zhang, Q.; Zhao, J.; Tang, X.; Chen, W. Urolithin A produced by novel microbial fermentation possesses anti-aging effects by improving mitophagy and reducing reactive oxygen species in Caenorhabditis elegans. J. Agric. Food Chem. 2023, 71, 6348–6357. [Google Scholar] [CrossRef]
- Liu, Q.; Hua, Z.; Chen, M.; Liu, S.; Ahmed, S.; Hou, X.; Yang, G.; Fang, Y. Changes in polyphenols and antioxidant properties of pomegranate peels fermented by urolithin A-producing Streptococcus thermophilus FUA329. ACS Food Sci. Technol. 2023, 3, 1383–1392. [Google Scholar] [CrossRef]
- Laveriano-Santos, E.P.; Quifer-Rada, P.; Marhuenda-Muñoz, M.; Arancibia-Riveros, C.; Vallverdú-Queralt, A.; Tresserra-Rimbau, A.; Ruiz-León, A.M.; Casas, R.; Estruch, R.; Bodega, P.; et al. Microbial phenolic metabolites in urine are inversely linked to certain features of metabolic syndrome in spanish adolescents. Antioxidants 2022, 11, 2191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sandhu, A.; Edirisinghe, I.; Burton-Freeman, B.M. Plasma and urinary (poly)phenolic profiles after 4-week red raspberry (Rubus idaeus L.) intake with or without fructo-oligosaccharide supplementation. Molecules 2020, 25, 4777. [Google Scholar] [CrossRef] [PubMed]
- Natella, F.; Leoni, G.; Maldini, M.; Natarelli, L.; Comitato, R.; Schonlau, F.; Virgili, F.; Canali, R. Absorption, metabolism, and effects at transcriptome level of a standardized french oak wood extract, robuvit, in healthy volunteers: Pilot study. J. Agric. Food Chem. 2014, 62, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Yang, J.; Cui, J.; Fan, Y.; Li, N.; Wang, C.; Liu, Y.; Dong, Y. Stability and mechanism of phenolic compounds from raspberry extract under in vitro gastrointestinal digestion. LWT-Food Sci. Technol. 2021, 139, 110552. [Google Scholar] [CrossRef]
- Gasperotti, M.; Masuero, D.; Guella, G.; Mattivi, F.; Vrhovsek, U. Development of a targeted method for twenty-three metabolites related to polyphenol gut microbial metabolism in biological samples, using SPE and UHPLC–ESI-MS/MS. Talanta 2014, 128, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Bayle, M.; Roques, C.; Marion, B.; Audran, M.; Oiry, C.; Bressolle-Gomeni, F.M.M.; Cros, G. Development and validation of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the determination of urolithin C in rat plasma and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2016, 131, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Ares, A.M.; Toribio, L.; García-Villalba, R.; Villalgordo, J.M.; Althobaiti, Y.; Tomás-Barberán, F.A.; Bernal, J. Separation of isomeric forms of urolithin glucuronides using supercritical fluid chromatography. J. Agric. Food Chem. 2023, 71, 3033–3039. [Google Scholar] [CrossRef]
- Ryu, D.; Mouchiroud, L.; Andreux, P.A.; Katsyuba, E.; Moullan, N.; Nicolet-dit-Félix, A.A.; Williams, E.G.; Jha, P.; Lo Sasso, G.; Huzard, D.; et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 2016, 22, 879–888. [Google Scholar] [CrossRef]
- Jiménez-Loygorri, J.I.; Villarejo-Zori, B.; Viedma-Poyatos, Á.; Zapata-Muñoz, J.; Benítez-Fernández, R.; Frutos-Lisón, M.D.; Tomás-Barberán, F.A.; Espín, J.C.; Area-Gómez, E.; Gomez-Duran, A.; et al. Mitophagy curtails cytosolic mtDNA-dependent activation of cGAS/STING inflammation during aging. Nat. Commun. 2024, 15, 830. [Google Scholar] [CrossRef]
- Qin, X.; Li, H.; Zhao, H.; Fang, L.; Wang, X. Enhancing healthy aging with small molecules: A mitochondrial perspective. Med. Res. Rev, 2024; online ahead of print. [Google Scholar] [CrossRef]
- Tang, L.; Mo, Y.; Li, Y.; Zhong, Y.; He, S.; Zhang, Y.; Tang, Y.; Fu, S.; Wang, X.; Chen, A. Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway. Biochem. Biophys. Res. Commun. 2017, 486, 774–780. [Google Scholar] [CrossRef]
- Cui, G.H.; Chen, W.Q.; Shen, Z.Y. Urolithin A shows anti-atherosclerotic activity via activation of class B scavenger receptor and activation of Nef2 signaling pathway. Pharmacol. Rep. 2018, 70, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Savi, M.; Bocchi, L.; Mena, P.; Dall’Asta, M.; Crozier, A.; Brighenti, F.; Stilli, D.; Del Rio, D. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc. Diabetol. 2017, 16, 80. [Google Scholar] [CrossRef] [PubMed]
- Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019, 22, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Huang, J.; Xu, B.; Ou, Z.; Zhang, L.; Lin, X.; Ye, X.; Kong, X.; Long, D.; Sun, X.; et al. Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J. Neuroinflamm. 2019, 16, 62. [Google Scholar] [CrossRef]
- Shen, P.X.; Li, X.; Deng, S.Y.; Zhao, L.; Zhang, Y.Y.; Deng, X.; Han, B.; Yu, J.; Li, Y.; Wang, Z.Z.; et al. Urolithin A ameliorates experimental autoimmune encephalomyelitis by targeting aryl hydrocarbon receptor. EBioMedicine 2021, 64, 103227. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, A.; Zheng, Y.R.; Wu, X.L.; Tang, W.D.; Liu, M.R.; Ma, S.J.; Jiang, L.; Hu, W.W.; Zhang, X.N.; Chen, Z. Urolithin A-activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neurosci. Ther. 2019, 25, 976–986. [Google Scholar] [CrossRef]
- Madsen, H.B.; Park, J.H.; Chu, X.; Hou, Y.; Li, Z.; Rasmussen, L.J.; Croteau, D.L.; Bohr, V.A.; Akbari, M. The cGAS-STING signaling pathway is modulated by urolithin A. Mech. Ageing Dev. 2024, 217, 111897. [Google Scholar] [CrossRef]
- Singh, R.; Chandrashekharappa, S.; Bodduluri, S.R.; Baby, B.V.; Hegde, B.; Kotla, N.G.; Hiwale, A.A.; Saiyed, T.; Patel, P.; Vijay-Kumar, M.; et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 2019, 10, 89. [Google Scholar] [CrossRef]
- Sairenji, T.; Collins, K.L.; Evans, D.V. An Update on inflammatory bowel disease. Prim. Care 2017, 44, 673–692. [Google Scholar] [CrossRef]
- Larrosa, M.; González-Sarrías, A.; Yáñez-Gascón, M.J.; Selma, M.V.; Azorín-Ortuño, M.; Toti, S.; Tomás-Barberán, F.; Dolara, P.; Espín, J.C. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J. Nutr. Biochem. 2010, 21, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, S.; Zhang, H.; Jo, Y.; Kang, J.S.; Ha, K.T.; Joo, J.; Lee, H.J.; Ryu, D. Gut microbiota-generated metabolites: Missing puzzles to hosts’ health, diseases, and aging. BMB Rep. 2024, 6194. [Google Scholar] [CrossRef] [PubMed]
- Heilman, J.; Andreux, P.; Tran, N.; Rinsch, C.; Blanco-Bose, W. Safety assessment of urolithin A, a metabolite produced by the human gut microbiota upon dietary intake of plant derived ellagitannins and ellagic acid. Food Chem. Toxicol. 2017, 108, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharma. 2016, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Andreux, P.A.; Blanco-Bose, W.; Ryu, D.; Burdet, F.; Ibberson, M.; Aebischer, P.; Auwerx, J.; Singh, A.; Rinsch, C. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat. Metab. 2019, 1, 595–603. [Google Scholar] [CrossRef] [PubMed]
- FDA. GRAS Notice GRN No. 791: Urolithin A; US Food and Drug Administration: Silver Spring, MD, USA, 2018. [Google Scholar]
- Liu, S.; D’Amico, D.; Shankland, E.; Bhayana, S.; Garcia, J.M.; Aebischer, P.; Rinsch, C.; Singh, A.; Marcinek, D.J. Effect of urolithin A supplementation on muscle endurance and mitochondrial health in older adults: A randomized clinical trial. JAMA Netw. Open 2022, 5, e2144279. [Google Scholar] [CrossRef]
- Singh, A.; D’Amico, D.; Andreux, P.A.; Fouassier, A.M.; Blanco-Bose, W.; Evans, M.; Aebischer, P.; Auwerx, J.; Rinsch, C. Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Rep. Med. 2022, 3, 100633. [Google Scholar] [CrossRef]
- Ghadimi, M.; Foroughi, F.; Hashemipour, S.; Rashidi Nooshabadi, M.; Ahmadi, M.H.; Ahadi Nezhad, B.; Khadem Haghighian, H. Randomized double-blind clinical trial examining the ellagic acid effects on glycemic status, insulin resistance, antioxidant, and inflammatory factors in patients with type 2 diabetes. Phytother. Res. 2021, 35, 1023–1032. [Google Scholar] [CrossRef]
- Cerdá, B.; Cerón, J.J.; Tomás-Barberán, F.A.; Espín, J.C. Repeated oral administration of high doses of the pomegranate ellagitannin punicalagin to rats for 37 days is not toxic. J. Agric. Food Chem. 2003, 51, 3493–3501. [Google Scholar] [CrossRef]
- Patel, C.; Dadhaniya, P.; Hingorani, L.; Soni, M.G. Safety assessment of pomegranate fruit extract: Acute and subchronic toxicity studies. Food Chem. Toxicol. 2008, 46, 2728–2735. [Google Scholar] [CrossRef]
- Inada, K.O.P.; Tomás-Barberán, F.A.; Perrone, D.; Monteiro, M. Metabolism of ellagitannins from Jabuticaba (Myrciaria jaboticaba) in normoweight, overweight and obese Brazilians: Unexpected laxative effects influence urolithins urinary excretion and metabotype distribution. J. Funct. Foods 2019, 57, 299–308. [Google Scholar] [CrossRef]
- Sivamani, R.K.; Chakkalakal, M.; Pan, A.; Nadora, D.; Min, M.; Dumont, A.; Burney, W.A.; Chambers, C.J. Prospective randomized, double-blind, placebo-controlled study of a standardized oral pomegranate extract on the gut microbiome and short-chain fatty acids. Foods 2023, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Chakkalakal, M.; Nadora, D.; Gahoonia, N.; Dumont, A.; Burney, W.; Pan, A.; Chambers, C.J.; Sivamani, R.K. Prospective randomized double-blind placebo-controlled study of oral pomegranate extract on skin wrinkles, biophysical features, and the gut-skin axis. J. Clin. Med. 2022, 11, 6724. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantzourani, C.; Kakouri, E.; Palikaras, K.; Tarantilis, P.A.; Kokotou, M.G. Urolithins and Their Precursors Ellagic Acid and Ellagitannins: Natural Sources, Extraction and Methods for Their Determination. Separations 2024, 11, 174. https://doi.org/10.3390/separations11060174
Mantzourani C, Kakouri E, Palikaras K, Tarantilis PA, Kokotou MG. Urolithins and Their Precursors Ellagic Acid and Ellagitannins: Natural Sources, Extraction and Methods for Their Determination. Separations. 2024; 11(6):174. https://doi.org/10.3390/separations11060174
Chicago/Turabian StyleMantzourani, Christiana, Eleni Kakouri, Konstantinos Palikaras, Petros A. Tarantilis, and Maroula G. Kokotou. 2024. "Urolithins and Their Precursors Ellagic Acid and Ellagitannins: Natural Sources, Extraction and Methods for Their Determination" Separations 11, no. 6: 174. https://doi.org/10.3390/separations11060174
APA StyleMantzourani, C., Kakouri, E., Palikaras, K., Tarantilis, P. A., & Kokotou, M. G. (2024). Urolithins and Their Precursors Ellagic Acid and Ellagitannins: Natural Sources, Extraction and Methods for Their Determination. Separations, 11(6), 174. https://doi.org/10.3390/separations11060174