The Important Role of Denitrifying Exoelectrogens in Single-Chamber Microbial Fuel Cells after Nitrate Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. MFC Configuration and Operational Conditions
2.2. Analysis
2.3. Micromorphology Observation and Microbial Community Analysis
3. Results and Discussion
3.1. Performance Evaluation of DNMFC and SCMFC
3.1.1. Electroactivity Performance
3.1.2. Voltage Variation and Nitrogen Removal
3.1.3. Performance of DNMFC
3.2. Microbial Community Analysis of DNMFC and SCMFC
3.3. Quantitative Analysis of Functional Bacteria
3.4. Insights into the Evolution Process after Nitrate Exposure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Modin, O.; Fukushi, K.; Rabaey, K.; Rozendal, R.A.; Yamamoto, K. Redistribution of wastewater alkalinity with a microbial fuel cell to support nitrification of reject water. Water Res. 2011, 45, 2691–2699. [Google Scholar] [CrossRef]
- Knowles, R. Denitrification. Microbiol. Rev. 1982, 46, 43–70. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-P.; Nàcher, C.P.I.; Merkey, B.; Zhou, Q.; Xia, S.-Q.; Yang, D.-H.; Sun, J.-H.; Smets, B.F. Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review. Environ. Eng. Sci. 2010, 27, 111–126. [Google Scholar] [CrossRef]
- Yan, H.J.; Saito, T.; Regan, J.M. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode. Water Res. 2012, 46, 2215–2224. [Google Scholar] [CrossRef]
- Rossi, R.; Hur, A.Y.; Page, M.A.; Thomas, A.O.B.; Butkiewicz, J.J.; Jones, D.W.; Baek, G.; Saikaly, P.E.; Cropek, D.M.; Logan, B.E. Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater. Water Res. 2022, 215, 118208. [Google Scholar] [CrossRef]
- Chen, L.; Ding, C.; Liu, B.; Lian, J.; Lai, L.; Yuan, L.; Wang, R. A Promising Process to Remove Nitrate from Solar Panel Production Wastewater and Meanwhile Generating Electricity. Water 2023, 15, 3347. [Google Scholar] [CrossRef]
- Liu, W.F.; Cheng, S.A.; Yin, L.; Sun, Y.; Yu, L.L. Influence of soluble microbial products on the long-term stability of air cathodes in microbial fuel cells. Electrochim. Acta 2018, 261, 557–564. [Google Scholar] [CrossRef]
- Yang, J.W.; Cheng, S.A. Effects of Using Anode Biofilm and Cathode Biofilm Bacteria as Inoculum on the Start-up, Electricity Generation, and Microbial Community of Air-Cathode Single-Chamber Microbial Fuel Cells. Pol. J. Environ. Stud. 2019, 28, 693–700. [Google Scholar]
- Li, H.; Zuo, W.; Tian, Y.; Zhang, J.; Di, S.J.; Li, L.P.; Su, X.Y. Simultaneous nitrification and denitrification in a novel membrane bioelectrochemical reactor with low membrane fouling tendency. Environ. Sci. Pollut. Res. 2017, 24, 5106–5117. [Google Scholar] [CrossRef]
- Yang, N.; Zhan, G.Q.; Luo, H.; Xiong, X.; Li, D.P. Integrated simultaneous nitrification/denitrification and comammox consortia as efficient biocatalysts enhance treatment of domestic wastewater in different up-flow bioelectrochemical reactors. Bioresour. Technol. 2021, 339, 125604. [Google Scholar] [CrossRef]
- Yang, N.; Zhou, Q.M.; Zhan, G.Q.; Liu, Y.L.; Luo, H.Q.; Li, D.P. Comparative evaluation of simultaneous nitritation/denitritation and energy recovery in air-cathode microbial fuel cells (ACMFCs) treating low C/N ratio wastewater. Sci. Total Environ. 2021, 788, 147652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.F.; Wang, J.Q.; Fu, G.K.; Zhang, Z. Simultaneous electricity generation nitrogen carbon removal in single-chamber microbial fuel cell for high-salinity wastewater treatment. J. Clean. Prod. 2020, 276, 123203. [Google Scholar] [CrossRef]
- Park, Y.; Nguyen, V.; Park, S.; Yu, J.; Lee, T. Effects of anode spacing and flow rate on energy recovery of flat-panel air-cathode microbial fuel cells using domestic wastewater. Bioresour. Technol. 2018, 258, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.P.; Srinivasan, B.; Guiot, S.R.; Tartakousky, B. The effect of real-time external resistance optimization on microbial fuel cell performance. Water Res. 2011, 45, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.Y.; Kim, H.W.; Lim, K.H.; Shin, H.S.; Logan, B.E. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosens. Bioelectron. 2010, 25, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.J.; Taha, K.; Kenney, I.; Yeh, D.H. The Role of Carbon to Nitrogen Ratio on the Performance of Denitrifying Biocathodes for Decentralized Wastewater Treatment. Water 2022, 14, 3076. [Google Scholar] [CrossRef]
- Kong, Y.; Hu, J.; Lu, X.; Cheng, C. Effects of Carb on Source on Denitrification and Electricity Generation in Composite Packing MFC-CW for Tail Water Treatment. Water 2023, 15, 4285. [Google Scholar] [CrossRef]
- Mei, T.; Cong, C.; Huang, Q.; Song, T.S.; Xie, J.J. Effect of 3D Carbon Electrodes with Different Pores on Solid-Phase Microbial Fuel Cell. Energ. Fuels 2020, 34, 16765–16771. [Google Scholar] [CrossRef]
- Zhang, X.L.; Li, C.H.; Guo, Q.J.; Huang, K.L. Performance of anaerobic fluidized bed microbial fuel cell with different porous anodes Chinese. J. Chem. Eng. 2020, 28, 846–853. [Google Scholar]
- Dessie, Y.; Tadesse, S.; Eswaramoorthy, R.; Adimasu, Y. Biosynthesized alpha-MnO2-based polyaniline binary composite as efficient bioanode catalyst for high-performance microbial fuel cell. All Life 2021, 14, 541–568. [Google Scholar] [CrossRef]
- Liang, B.L.; Ren, C.; Zhao, Y.B.; Li, K.X.; Lv, C.C. Nitrogenous mesoporous carbon coated with Co/Cu nanoparticles modified activated carbon as air cathode catalyst for microbial fuel cell. J. Electroanal. Chem. 2020, 860, 113904. [Google Scholar] [CrossRef]
- Gurung, A.; Thapa, B.S.; Ko, S.-Y.; Ashun, E.; Toor, U.A.; Oh, S.-E. Denitrification in Microbial Fuel Cells Using Granular Activated Carbon as an Effective Biocathode. Energies 2023, 16, 709. [Google Scholar] [CrossRef]
- Kondaveeti, S.; Choi, D.-H.; Noori, M.T.; Min, B. Ammonia Removal by Simultaneous Nitrification and Denitrification in a Single Dual-Chamber Microbial Electrolysis Cell. Energies 2022, 15, 9171. [Google Scholar] [CrossRef]
- Zhang, F.; He, Z. Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell. Process Biochem. 2012, 47, 2146–2151. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, Y.; Wang, L.T.; Wu, Q.; Zhang, H.W. Cathode Denitrification of Microbial Fuel Cells. Prog. Chem. 2020, 32, 2013–2021. [Google Scholar]
- Huang, H.B.; Cheng, S.A.; Yang, J.W.; Li, C.C.; Sun, Y.; Cen, K.F. Effect of nitrate on electricity generation in single-chamber air cathode microbial fuel cells. Chem. Eng. J. 2018, 337, 661–670. [Google Scholar] [CrossRef]
- Qiao, S.; Yin, X.; Zhou, J.T.; Wei, L.E.; Zhong, J.Y. Integrating anammox with the autotrophic denitrification process via electrochemistry technology. Chemosphere 2018, 195, 817–824. [Google Scholar] [CrossRef]
- Jin, X.J.; Guo, F.; Ma, W.Q.; Liu, Y.; Liu, H. Heterotrophic anodic denitrification improves carbon removal and electricity recovery efficiency in microbial fuel cells. Chem. Eng. J. 2019, 370, 527–535. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Wang, S.; Yin, F.J.; Hu, P.; Wang, X.Z.; Liu, Y.; Liu, H. Enhancing sensitivity of microbial fuel cell sensors for low concentration biodegradable organic matter detection: Regulation of substrate concentration anode area external resistance. J. Environ. Sci. 2021, 101, 227–235. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for Examination of Water and Wastewater, 21st ed.; Water Environment Federation: Washington, DC, USA, 2001. [Google Scholar]
- Vilar-Sanz, A.; Puig, S.; Garcia-Lledo, A.; Trias, R.; Balaguer, M.D.; Colprim, J.; Baneras, L. Denitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell. PLoS ONE 2013, 8, e63460. [Google Scholar] [CrossRef]
- Luo, S.; Fu, B.Y.; Liu, F.B.; He, K.; Yang, H.; Ma, J.J.; Wang, H.; Zhang, X.Y.; Liang, P.; Huang, X. Construction of innovative 3D-weaved carbon mesh anode network to boost electron transfer and microbial activity in bioelectrochemical system. Water Res. 2020, 172, 115493. [Google Scholar] [CrossRef]
- Kashima, H.; Regan, J.M. Facultative nitrate reduction by electrode-respiring Geobacter metallireducens biofilms as a competitive reaction to electrode reduction in a bioelectrochemical system. Environ. Sci. Technol. 2015, 49, 3195–3202. [Google Scholar] [CrossRef]
- Yuan, J.Q.; Yuan, H.G.; Huang, S.B.; Liu, L.J.; Fu, F.C.; Zhang, Y.Q.; Cheng, F.Q.; Li, J.F. Comprehensive performance, bacterial community structure of single-chamber microbial fuel cell affected by COD/N ratio and physiological stratifications in cathode biofilm. Bioresour. Technol. 2021, 320, 124416. [Google Scholar] [CrossRef] [PubMed]
- Jangir, Y.; French, S.; Momper, L.M.; Moser, D.P.; Amend, J.P.; El-Naggar, M.Y. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species. Front. Microbiol. 2016, 7, 756. [Google Scholar] [CrossRef] [PubMed]
- Manogari, R.; Daniel, D.K. Isolation, Characterization and Assessment of Pseudomonas sp. VITDM1 for Electricity Generation in a Microbial Fuel Cell. Indian J. Microbiol. 2015, 55, 8–12. [Google Scholar] [CrossRef]
- Xing, D.F.; Cheng, S.A.; Logan, B.E.; Regan, J.M. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Appl. Microbiol. Biot. 2010, 85, 1575–1587. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Y.; Liu, Y.X.; Wu, L.J.; Ren, R.P.; Lv, Y.K. Enhanced nitrogen removal of low C/N wastewater using a novel microbial fuel cell (MFC) with Cupriavidus sp. S1 as a biocathode catalyst (BCS1). J. Chem. Technol. Biot. 2020, 95, 1203–1215. [Google Scholar] [CrossRef]
- Ilamathi, R.; Sheela, A.M.; Gandhi, N.N. Comparative evaluation of Pseudomonas species in single chamber microbial fuel cell with manganese coated cathode for reactive azo dye removal. Int. Biodeterior. Biodegrad. 2019, 144, 104744. [Google Scholar] [CrossRef]
- Li, Z.H.; Zhang, Q.H.; Jiang, Q.R.; Zhan, G.Q.; Li, D.P. The enhancement of iron fuel cell on bio-cathode denitrification and its mechanism as well as the microbial community analysis of bio-cathode. Bioresour. Technol. 2019, 274, 1–8. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Z.L.; Wang, Y.Z.; Yang, C.X.; Chung, J.S.; Wang, A.J. Cathodic bacterial community structure applying the different co-substrates for reductive decolorization of Alizarin Yellow R. Bioresour. Technol. 2016, 208, 64–72. [Google Scholar] [CrossRef]
- Yun, H.; Liang, B.; Kong, D.Y.; Wang, A.J. Improving biocathode community multifunctionality by polarity inversion for simultaneous bioelectroreduction processes in domestic wastewater. Chemosphere 2018, 194, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.J.; Yang, N.; Liu, Y.; Guo, F.; Liu, H. Bifunctional cathode using a biofilm and Pt/C catalyst for simultaneous electricity generation and nitrification in microbial fuel cells. Bioresour. Technol. 2020, 306, 123120. [Google Scholar] [CrossRef] [PubMed]
DNMFC | SCMFC | |
---|---|---|
Electron recovery (NH4+) | 106.8 ± 0.3 | 127.3 ± 0.3 |
NH4+-N loss | 6.2 ± 0.5% | 13.5 ± 1.0% |
NO3−-N generation | 0.3 ± 0.1% | n.d. 1 |
COD removal | 93.4 ± 0.2 | 87.4 ± 0.4% |
Electron recovery (NO3−) | 46.7 ± 0.2 | 36.2 ± 4.5 |
NO3−-N removal | 99.2 ± 1.0% | 80.3 ± 2.0% |
NO2−-N generation | 0.03 ± 0.01% | 4.9 ± 0.2% |
NH4+-N generation | 0.1 ± 0.2% | 11.4 ± 1.2% |
TN removal | 98.1 ± 0.2% | 65.0 ± 3.5% |
COD removal | 95.4 ± 0.2% | 89.3 ± 0.5% |
COD/NO3−-N | EA 1 (μmol/e) | Ee 2 (μmol/e) | EN 3 (μmol/e) | CE (%) | ETE (%) |
---|---|---|---|---|---|
8:0 | 281.1 ± 3.5 | 106.8 ± 4.5 | / | 38.0 ± 1.1 | 38.0 ± 1.1 |
8:1 | 281.1 ± 2.5 | 46.4 ± 2.0 | 101.2 ± 1.2 | 16.5 ± 0.5 | 52.5 ± 0.5 |
5.4:1 | 210.8 ± 2.8 | 23.0 ± 1.2 | 115.3 ± 1.5 | 10.9 ± 0.5 | 65.6 ± 0.5 |
4.3:1 | 168.7 ± 2.1 | 7.3 ± 0.6 | 112.6 ± 1.0 | 4.3 ± 0.8 | 71.1 ± 0.8 |
3.6:1 | 140.5 ± 1.7 | 5.2 ± 0.5 | 56.9 ± 0.5 | 3.7 ± 0.5 | 44.2 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Wang, W.; Yan, Z.; Xu, D. The Important Role of Denitrifying Exoelectrogens in Single-Chamber Microbial Fuel Cells after Nitrate Exposure. Separations 2024, 11, 187. https://doi.org/10.3390/separations11060187
Jin X, Wang W, Yan Z, Xu D. The Important Role of Denitrifying Exoelectrogens in Single-Chamber Microbial Fuel Cells after Nitrate Exposure. Separations. 2024; 11(6):187. https://doi.org/10.3390/separations11060187
Chicago/Turabian StyleJin, Xiaojun, Wenyi Wang, Zhuo Yan, and Dake Xu. 2024. "The Important Role of Denitrifying Exoelectrogens in Single-Chamber Microbial Fuel Cells after Nitrate Exposure" Separations 11, no. 6: 187. https://doi.org/10.3390/separations11060187
APA StyleJin, X., Wang, W., Yan, Z., & Xu, D. (2024). The Important Role of Denitrifying Exoelectrogens in Single-Chamber Microbial Fuel Cells after Nitrate Exposure. Separations, 11(6), 187. https://doi.org/10.3390/separations11060187