Research on the Influence of the Scaling-up Process on the Flow Structure and Two-Phase Distribution of Gas–Solid Fluidized Beds
Abstract
:1. Introduction
2. Numerical Method
3. Results and Discussion
3.1. Grid Independence
3.2. Changes in Axial Density of the Bed
3.3. Two-Phase Flow Velocity
3.4. Radial Density Changes in the Bed
3.5. Study of Phase Distribution Patterns
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Li, J.; Jiang, W.; Tang, S.Y. Experimental Design of Reactor Scaling Criteria Exploration. Exp. Sci. Technol. 2019, 17, 46–50. [Google Scholar]
- Gao, Z.L.; Lu, G.X.; Duan, C.L.; Zhou, C.Y.; Zhu, H.Z. Bed density prediction during fluidized bed scaling up using machine learning. Adv. Powder Technol. 2023, 34, 104278. [Google Scholar] [CrossRef]
- Fitzgerald, T.; Bushnell, D.; Crane, S.; Shieh, Y.-C. Testing of cold scaled bed modeling for fluidized-bed combustors. Powder Technol. 1984, 38, 107–120. [Google Scholar] [CrossRef]
- Knowlton, T.M.; Karri, S.B.R.; Issangya, A. Scale-up of fluidized-bed hydrodynamics. Powder Technol. 2005, 150, 72–77. [Google Scholar] [CrossRef]
- Yang, W.C. Handbook of Fluidization and Fluid-Particle Systems, 1st ed.; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- De Groot, J.H. Fluidization Performance Large Scale Equipment. In Fluidization; Netherlands University Press: Amsterdam, Netherlands, 1967; pp. 348–358. [Google Scholar]
- Werther, J. Influence of the Bed Diameter on the Hydrodynamics of Gas Fluidized Beds. AIChE Symp. Ser. 1974, 70, 53–62. [Google Scholar]
- Bakshi, A.; Altantzis, C.; Glicksman, L.R.; Ghoniem, A.F. Gas-flow distribution in bubbling fluidized beds: CFD-based analysis and impact of operating conditions. Powder Technol. 2017, 316, 500–511. [Google Scholar] [CrossRef]
- Mabrouk, R.; Radmanesh, R.; Chaouki, J.; Guy, C. Scale Effects on Fluidized Bed Hydrodynamics. Int. J. Chem. React. Eng. 2005, 3, 18. [Google Scholar] [CrossRef]
- Bao, G.Q.; Gu, W.G.; Mu, W.G. Machine learning based prediction of minimum fluidization velocity in gas-solid fluidized beds. Clean Coal Technol. 2021, 27, 25–31. [Google Scholar]
- Frye, C.G.; Lake, W.C.; Eckstrom, H.C. Gas-solid contacting with ozone decomposition reaction. AIChE J. 1958, 4, 403–408. [Google Scholar] [CrossRef]
- Zhou, C.Y. Density Adjustment in Gas-Solid fluidized Bed for Beneficiation Using Geldart a Dense Medium. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2019. [Google Scholar]
- Glicksman, L. Scaling relationships for fluidized beds. Chem. Eng. Sci. 1988, 43, 419. [Google Scholar] [CrossRef]
- Horio, M.; Ishii, H.; Sawa, Y.; Muchi, I. A new similarity rule for fluidized bed scale up. AIChE J. 1986, 32, 1466. [Google Scholar] [CrossRef]
- Luo, H.; Lu, B.N.; Zhang, J.Y.; Wu, H.; Wang, W. A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization. Chem. Eng. J. 2017, 326, 47–57. [Google Scholar] [CrossRef]
- He, J.F. Numerical Simulation of Multiphase Fluid Dynamics in an Air Heavy Medium Fluidized Bed Based on the Euler-Euler Model. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2012. [Google Scholar]
- Luo, J.W.; Wang, Y.B.; Li, W. A dual fluid model of gas-solid bubbling bed structure and its simulation verification. J. Process Eng. 2024, 24, 435–444. (In Chinese) [Google Scholar]
- Van der Hoef, M.A.; Annaland, M.V.; Kuipers, J.A.M. Computational fluid dynamics for dense gas-solid fluidized beds: A multi-scale modeling strategy. Chem. Eng. Sci. 2004, 59, 5157–5165. [Google Scholar] [CrossRef]
- Wang, J.W. Continuum theory for dense gas-solid flow: A state-of the-art review. Chem. Eng. Sci. 2020, 215, 115428. [Google Scholar]
- Beetstra, R.; Van der Hoef, M.A.; Kuipers, J.A.M. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J. 2007, 53, 489–501. [Google Scholar] [CrossRef]
- Van der Hoef, M.A.; Beetstra, R.; Kuipers, J.A.M. Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: Results for the permeability and drag force. J. Fluid Mech. 2005, 528, 233–254. [Google Scholar] [CrossRef]
- Alobaid, F.; Almohammed, N.; Farid, M.M. Progress in CFD simulations of fluidized beds for chemical and energy process engineering. Prog. Energy Combust. Sci. 2022, 91, 100930. [Google Scholar]
- Handayani, S.U.; Wahyudi, H.; Agustina, S. CFD-DEM Study of heat and mass transfer of ellipsoidal particles in fluidized bed dryers. Powder Technol. 2023, 425, 118535. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, Y.; Fang, Z.; Zhou, H.; Wei, S.; Yang, L. The research of gas-solid fluidized bed bubbling behavior based on CFD-DEM coupled simulation. Chem. Eng. Res. Des. 2023, 195, 166–180. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Ye, X.; Su, Y.; Yu, A.; Tan, Y. Numerical Investigation on Thermal Drying Process of Sludges Based on CFD-DEM. Ind. Eng. Chem. Res. 2023, 62, 16990–17007. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y. Discrete particle simulation of particulate systems: A review of major applications and findings. Chem. Eng. Sci. 2008, 63, 5728–5770. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y. Discrete particle simulation of particulate systems: Theoretical developments. Chem. Eng. Sci. 2007, 62, 3378–3396. [Google Scholar] [CrossRef]
- Rong, L.W.; Dong, K.J.; Yu, A.B. Lattice-Boltzmann simulation of fluid flow through packed beds of spheres: Effect of particle size distribution. Chem. Eng. Sci. 2014, 116, 508–523. [Google Scholar] [CrossRef]
- Mirek, P.; Ziaja, J. The influence of sampling point on solids suspension density applied in scaling of the hydrodynamics of a supercritical CFB boiler. Chem. Process Eng. 2011, 32, 391–399. [Google Scholar] [CrossRef]
- Leckner, B.; Szentannai, P.; Winter, F. Scale-up of fluidized-bed combustion—A review. Fuel 2011, 90, 2951–2964. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Gas velocity | 0.2 m/s |
Gas density | 1.29 kg/m3 |
Gas viscosity | 1.8 × 10−5 Pa·s |
Particle diameter | 0.0002 m |
Particle density | 4500 kg/m3 |
Restitution of coefficient | 0.9 |
Initial particle volume fraction | 0.6 |
Time step | 0.0001 s |
Drag model | Gidaspow |
Viscous model | laminar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Wei, J.; Wang, H.; Zhou, C. Research on the Influence of the Scaling-up Process on the Flow Structure and Two-Phase Distribution of Gas–Solid Fluidized Beds. Separations 2024, 11, 202. https://doi.org/10.3390/separations11070202
Gao Z, Wei J, Wang H, Zhou C. Research on the Influence of the Scaling-up Process on the Flow Structure and Two-Phase Distribution of Gas–Solid Fluidized Beds. Separations. 2024; 11(7):202. https://doi.org/10.3390/separations11070202
Chicago/Turabian StyleGao, Zhonglin, Jie Wei, Hongyang Wang, and Chenyang Zhou. 2024. "Research on the Influence of the Scaling-up Process on the Flow Structure and Two-Phase Distribution of Gas–Solid Fluidized Beds" Separations 11, no. 7: 202. https://doi.org/10.3390/separations11070202
APA StyleGao, Z., Wei, J., Wang, H., & Zhou, C. (2024). Research on the Influence of the Scaling-up Process on the Flow Structure and Two-Phase Distribution of Gas–Solid Fluidized Beds. Separations, 11(7), 202. https://doi.org/10.3390/separations11070202