Dispersive Liquid–Liquid Micro Extraction: An Analytical Technique Undergoing Continuous Evolution and Development—A Review of the Last 5 Years
Abstract
:1. Introduction
2. DLLME Combined with Other Extraction Techniques
3. Extraction Solvents
- (a)
- Its density must be lower or higher than that of water so that it can be separated via centrifugation;
- (b)
- It must be immiscible with the solution;
- (c)
- It must form an opalescent solution when injected together with the dispersing solvent;
- (d)
- It must have an affinity towards the target compounds.
4. DLLME and Derivatization
- -
- Silylation: The addition of silyl groups to compounds containing active hydrogen (e.g., alcohols, amines, carboxylic acids). This improves the volatility and stability of the analytes.
- -
- Methylation: The addition of methyl groups to compounds containing active hydrogen atoms. Useful for analyzing amines and phenols, it improves chromatographic separation and volatility.
- -
- Acylation: The addition of acyl groups to compounds containing amino or hydroxyl groups. This improves detectability via chromatography.
- -
- Etherification: The addition of ethyl or methyl groups to compounds containing hydroxyl groups. This improves stability and discoverability.
5. Conclusions
Funding
Conflicts of Interest
References
- Zgoła-Grześkowiak, A.; Grześkowiak, T. Dispersive Liquid-Liquid Microextraction. TrAC Trends Anal. Chem. 2011, 30, 1382–1399. [Google Scholar] [CrossRef]
- Yan, H.; Wang, H. Recent Development and Applications of Dispersive Liquid–Liquid Microextraction. J. Chromatogr. A 2013, 1295, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.-R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid–Liquid Microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Yamini, Y.; Faraji, M. Evolution of Dispersive Liquid–Liquid Microextraction Method. J. Chromatogr. A 2010, 1217, 2342–2357. [Google Scholar] [CrossRef]
- Leong, M.-I.; Fuh, M.-R.; Huang, S.-D. Beyond Dispersive Liquid–Liquid Microextraction. J. Chromatogr. A 2014, 1335, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, L.; Tamiji, Z.; Khoshayand, M.R. Applications and Opportunities of Experimental Design for the Dispersive Liquid–Liquid Microextraction Method—A Review. Talanta 2018, 190, 335–356. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, E.; Kamankesh, M.; Mohammadi, A.; Attaran, A. Acrylamide in Bread Samples: Determining Using Ultrasonic-Assisted Extraction and Microextraction Method Followed by Gas Chromatography-Mass Spectrometry. J. Cereal Sci. 2018, 79, 1–5. [Google Scholar] [CrossRef]
- Amirkhizi, B.; Nemati, M.; Arefhosseini, S.R.; Shahraki, S.H. Application of the Ultrasonic-Assisted Extraction and Dispersive Liquid–Liquid Microextraction for the Analysis of AFB1 in Egg. Food Anal. Methods 2018, 11, 913–920. [Google Scholar] [CrossRef]
- Abo Taleb, E.S.; Antonious, M.; El Sheikh, R.; Youssef, A.; Gouda, A. An Eco-Friendly Ultrasound-Assisted Emulsification Dispersive Liquid–Liquid Microextraction of Nickel in Environmental Samples Coupled with Spectrophotometry. Egypt. J. Chem. 2021, 64, 1877–1888. [Google Scholar] [CrossRef]
- Mao, X.; Wan, Y.; Li, Z.; Chen, L.; Lew, H.; Yang, H. Analysis of Organophosphorus and Pyrethroid Pesticides in Organic and Conventional Vegetables Using QuEChERS Combined with Dispersive Liquid-Liquid Microextraction Based on the Solidification of Floating Organic Droplet. Food Chem. 2020, 309, 125755. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y.; Li, H.; Peng, F.; Qiu, B.; Yang, Z. Development of QuEChERS-DLLME Method for Determination of Neonicotinoid Pesticide Residues in Grains by Liquid Chromatography-Tandem Mass Spectrometry. Food Chem. 2020, 331, 127190. [Google Scholar] [CrossRef]
- Petrarca, M.H.; Godoy, H.T. Gas Chromatography–Mass Spectrometry Determination of Polycyclic Aromatic Hydrocarbons in Baby Food Using QuEChERS Combined with Low-Density Solvent Dispersive Liquid–Liquid Microextraction. Food Chem. 2018, 257, 44–52. [Google Scholar] [CrossRef]
- Nagyová, S.; Tölgyessy, P.; Laurenčík, M.; Kirchner, M. Miniaturized QuEChERS Based Sample Preparation Method Combined with Gas Chromatography–Tandem Mass Spectrometry for the Determination of Selected Polycyclic Aromatic Hydrocarbons in Crustacean Gammarids. Microchem. J. 2022, 173, 107011. [Google Scholar] [CrossRef]
- Barzegar, F.; Omidi, N.; Kamankesh, M.; Mohammadi, A.; Ferdowsi, R.; Jazaeri, S. An Advanced Microwave-Assisted Extraction-Low Density Solvent Based on a Sensitive Microextraction Method Coupled with Reverse Phase High-Performance Liquid Chromatography for the Simultaneous Determination of Heterocyclic Aromatic Amines in Fried Chicken Nuggets. Anal. Methods 2019, 11, 942–949. [Google Scholar] [CrossRef]
- Cui, H.; Gao, W.; Lin, Y.; Zhang, J.; Yin, R.; Xiang, Z.; Zhang, S.; Zhou, S.; Chen, W.; Cai, K. Development of Microwave-Assisted Extraction and Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Mass Spectrometry for the Determination of Organic Additives in Biodegradable Mulch Films. Microchem. J. 2021, 160, 105722. [Google Scholar] [CrossRef]
- Farajvand, M.; Farajzadeh, K.; Faghani, G. Synthesis of Graphene Oxide/Polyaniline Nanocomposite for Measuring Cadmium(II) by Solid Phase Extraction Combined with Dispersive Liquid-Liquid Microextraction. Mater. Res. Express 2018, 5, 075017. [Google Scholar] [CrossRef]
- Fan, Y.; Zeng, G.; Ma, X. Multi-Templates Surface Molecularly Imprinted Polymer for Rapid Separation and Analysis of Quinolones in Water. Environ. Sci. Pollut. Res. 2020, 27, 7177–7187. [Google Scholar] [CrossRef]
- Ahmadi-Jouibari, T.; Noori, N.; Sharafi, K.; Fattahi, N. Ultra-Preconcentration of Common Herbicides in Aqueous Samples Using Solid Phase Extraction Combined with Dispersive Liquid–Liquid Microextraction Followed by HPLC–UV. Toxin Rev. 2021, 40, 1253–1260. [Google Scholar] [CrossRef]
- Christensen, P.; Kristensen, M.; Hansen, H.C.B.; Borggaard, O.K.; Christensen, J.H. A Retrospective Quantification Study of Benzoic Acid, Ibuprofen, and Mecoprop in Danish Groundwater Samples. Environ. Adv. 2022, 7, 100180. [Google Scholar] [CrossRef]
- Antonelli, L.; Dal Bosco, C.; De Cesaris, M.G.; Felli, N.; Lucci, E.; Gentili, A. Solid-Phase Extraction Combined with Dispersive Liquid-Liquid Microextraction for the Analysis of Glucocorticoids in Environmental Waters Using Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. Open 2023, 4, 100100. [Google Scholar] [CrossRef]
- Chen, J.; Yi, Z.; Yin, J.; Dong, S.; Wang, L.; Li, Y. Determination of Fragrance Allergens in Paper Personal Care Products by Headspace (HS) Solid-Phase Microextraction (SPME) Gas Chromatography-Mass Spectrometry (GC-MS) with Response Surface Methodology (RSM) Optimization. Anal. Lett. 2023, 56, 1868–1883. [Google Scholar] [CrossRef]
- Nie, L.; Cai, C.; Guo, R.; Yao, S.; Zhu, Z.; Hong, Y.; Guo, D. Ionic Liquid-Assisted DLLME and SPME for the Determination of Contaminants in Food Samples. Separations 2022, 9, 170. [Google Scholar] [CrossRef]
- Luo, X.; Wang, X.; Du, M.; Xu, X. Dispersive Liquid-Liquid Microextraction Followed by HS-SPME for the Determination of Flavor Enhancers in Seafood Using GC-MS. Foods 2022, 11, 1507. [Google Scholar] [CrossRef]
- Benedé, J.L.; Anderson, J.L.; Chisvert, A. Trace Determination of Volatile Polycyclic Aromatic Hydrocarbons in Natural Waters by Magnetic Ionic Liquid-Based Stir Bar Dispersive Liquid Microextraction. Talanta 2018, 176, 253–261. [Google Scholar] [CrossRef]
- Kepekci-Tekkeli, S.E.; Durmus, Z. Magnetic solid phase extraction applications combined with analytical methods for determination of drugs in different matrices review. J. Chil. Chem. Soc. 2019, 64, 4448–4458. [Google Scholar] [CrossRef]
- Jinadasa, B.K.K.K.; Monteau, F.; Morais, S. Critical Review of Micro-Extraction Techniques Used in the Determination of Polycyclic Aromatic Hydrocarbons in Biological, Environmental and Food Samples. Food Addit. Contam. Part A 2020, 37, 1004–1026. [Google Scholar] [CrossRef]
- Mogaddam, M.R.A.; Farajzadeh, M.A.; Mohebbi, A.; Nemati, M. Stir Bar Sorptive Extraction Combined with Deep Eutectic Solvent-Based Dispersive Liquid–Liquid Microextraction: Application in Simultaneous Derivatisation and Extraction of Acidic Pesticides. Int. J. Environ. Anal. Chem. 2022, 102, 2673–2685. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, J.; Lei, S.; Guo, X.; Zhao, L. Simultaneous Enantiomeric Analysis of Eight Pesticides in Soils and River Sediments by Chiral Liquid Chromatography-Tandem Mass Spectrometry. Chemosphere 2018, 204, 210–219. [Google Scholar] [CrossRef]
- Piergiovanni, M.; Cappiello, A.; Famiglini, G.; Termopoli, V.; Palma, P. Determination of Benzodiazepines in Beverages Using Green Extraction Methods and Capillary HPLC-UV Detection. J. Pharm. Biomed. Anal. 2018, 154, 492–500. [Google Scholar] [CrossRef]
- D’Ovidio, C.; Bonelli, M.; Rosato, E.; Tartaglia, A.; Ulusoy, H.İ.; Samanidou, V.; Furton, K.G.; Kabir, A.; Ali, I.; Savini, F.; et al. Novel Applications of Microextraction Techniques Focused on Biological and Forensic Analyses. Separations 2022, 9, 18. [Google Scholar] [CrossRef]
- Tabani, H.; Shokri, A.; Tizro, S.; Nojavan, S.; Varanusupakul, P.; Alexovič, M. Evaluation of Dispersive Liquid–Liquid Microextraction by Coupling with Green-Based Agarose Gel-Electromembrane Extraction: An Efficient Method to the Tandem Extraction of Basic Drugs from Biological Fluids. Talanta 2019, 199, 329–335. [Google Scholar] [CrossRef]
- Karami, M.; Yamini, Y. On-Disc Electromembrane Extraction-Dispersive Liquid-Liquid Microextraction: A Fast and Effective Method for Extraction and Determination of Ionic Target Analytes from Complex Biofluids by GC/MS. Anal. Chim. Acta 2020, 1105, 95–104. [Google Scholar] [CrossRef]
- Kamankesh, M.; Barzegar, F.; Shariatifar, N.; Mohammadi, A. The Measurement of Hazardous Biogenic Amines in Non-Alcoholic Beers: Efficient and Applicable Miniaturized Electro-Membrane Extraction Joined to Gas Chromatography-Mass Spectrometry. Foods 2023, 12, 1141. [Google Scholar] [CrossRef]
- Kokosa, J.M.; Przyjazny, A. Green Microextraction Methodologies for Sample Preparations. Green Anal. Chem. 2022, 3, 100023. [Google Scholar] [CrossRef]
- El-Deen, A.K.; Shimizu, K. Deep Eutectic Solvent as a Novel Disperser in Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet (DLLME-SFOD) for Preconcentration of Steroids in Water Samples: Assessment of the Method Deleterious Impact on the Environment Using Analytical Eco-Scale and Green Analytical Procedure Index. Microchem. J. 2019, 149, 103988. [Google Scholar] [CrossRef]
- El-Deen, A.K.; Shimizu, K. A Green Air Assisted-Dispersive Liquid-Liquid Microextraction Based on Solidification of a Novel Low Viscous Ternary Deep Eutectic Solvent for the Enrichment of Endocrine Disrupting Compounds from Water. J. Chromatogr. A 2020, 1629, 461498. [Google Scholar] [CrossRef]
- Caleb, J.; Alshana, U.; Ertaş, N. Smartphone Digital Image Colorimetry Combined with Solidification of Floating Organic Drop-Dispersive Liquid-Liquid Microextraction for the Determination of Iodate in Table Salt. Food Chem. 2021, 336, 127708. [Google Scholar] [CrossRef]
- Wu, B.; Guo, Z.; Li, X.; Huang, X.; Teng, C.; Chen, Z.; Jing, X.; Zhao, W. Analysis of Pyrethroids in Cereals by HPLC with a Deep Eutectic Solvent-Based Dispersive Liquid–Liquid Microextraction with Solidification of Floating Organic Droplets. Anal. Methods 2021, 13, 636–641. [Google Scholar] [CrossRef]
- El-Deen, A.K.; Shimizu, K. Deep Eutectic Solvents as Promising Green Solvents in Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet: Recent Applications, Challenges and Future Perspectives. Molecules 2021, 26, 7406. [Google Scholar] [CrossRef] [PubMed]
- Abdi, K.; Ezoddin, M.; Pirooznia, N. Ultrasound-Assisted Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Using Deep Eutectic Solvent as Disperser for Preconcentration of Ni and Co. Int. J. Environ. Anal. Chem. 2023, 103, 4806–4819. [Google Scholar] [CrossRef]
- Wang, X.; Lin, L.; Luan, T.; Yang, L.; Tam, N.F.Y. Determination of Hydroxylated Metabolites of Polycyclic Aromatic Hydrocarbons in Sediment Samples by Combining Subcritical Water Extraction and Dispersive Liquid–Liquid Microextraction with Derivatization. Anal. Chim. Acta 2012, 753, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Kang, H.; Yue, Z.; Yang, L.; Lin, L.; Wang, X.; Luan, T. Determination of 13 Endocrine Disrupting Chemicals in Sediments by Gas Chromatography–Mass Spectrometry Using Subcritical Water Extraction Coupled with Dispersed Liquid–Liquid Microextraction and Derivatization. Anal. Chim. Acta 2015, 866, 41–47. [Google Scholar] [CrossRef]
- Niell, S.; Besil, N.; Colazzo, M.; Cesio, M.V.; Heinzen, H. QuEChERS and Other MRM Sample Preparation Methods. In Multiresidue Methods for the Analysis of Pesticide Residues in Food; Heinzen, H., Nollet, L.M.L., Fernández-Alba, A.R., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 131–169. ISBN 978-1-315-11835-2. [Google Scholar]
- Viñas, P.; Pastor-Belda, M.; Campillo, N.; Bravo-Bravo, M.; Hernández-Córdoba, M. Capillary Liquid Chromatography Combined with Pressurized Liquid Extraction and Dispersive Liquid–Liquid Microextraction for the Determination of Vitamin E in Cosmetic Products. J. Pharm. Biomed. Anal. 2014, 94, 173–179. [Google Scholar] [CrossRef]
- Sajid, M. Dispersive Liquid-Liquid Microextraction: Evolution in Design, Application Areas, and Green Aspects. TrAC Trends Anal. Chem. 2022, 152, 116636. [Google Scholar] [CrossRef]
- Leong, M.-I.; Chang, C.-C.; Fuh, M.-R.; Huang, S.-D. Low Toxic Dispersive Liquid–Liquid Microextraction Using Halosolvents for Extraction of Polycyclic Aromatic Hydrocarbons in Water Samples. J. Chromatogr. A 2010, 1217, 5455–5461. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Green Analytical Chemistry Metrics: A Review. Talanta 2022, 238, 123046. [Google Scholar] [CrossRef]
- Yavir, K.; Konieczna, K.; Marcinkowski, Ł.; Kloskowski, A. Ionic Liquids in the Microextraction Techniques: The Influence of ILs Structure and Properties. TrAC Trends Anal. Chem. 2020, 130, 115994. [Google Scholar] [CrossRef]
- Rykowska, I.; Ziemblińska, J.; Nowak, I. Modern Approaches in Dispersive Liquid-Liquid Microextraction (DLLME) Based on Ionic Liquids: A Review. J. Mol. Liq. 2018, 259, 319–339. [Google Scholar] [CrossRef]
- Lu, N.; He, X.; Wang, T.; Liu, S.; Hou, X. Magnetic Solid-Phase Extraction Using MIL-101(Cr)-Based Composite Combined with Dispersive Liquid-Liquid Microextraction Based on Solidification of a Floating Organic Droplet for the Determination of Pyrethroids in Environmental Water and Tea Samples. Microchem. J. 2018, 137, 449–455. [Google Scholar] [CrossRef]
- Merib, J.; Spudeit, D.A.; Corazza, G.; Carasek, E.; Anderson, J.L. Magnetic Ionic Liquids as Versatile Extraction Phases for the Rapid Determination of Estrogens in Human Urine by Dispersive Liquid-Liquid Microextraction Coupled with High-Performance Liquid Chromatography-Diode Array Detection. Anal. Bioanal. Chem. 2018, 410, 4689–4699. [Google Scholar] [CrossRef] [PubMed]
- AlipanahpourDil, E.; Ghaedi, M.; Asfaram, A.; Tayebi, L.; Mehrabi, F. A Ferrofluidic Hydrophobic Deep Eutectic Solvent for the Extraction of Doxycycline from Urine, Blood Plasma and Milk Samples Prior to Its Determination by High-Performance Liquid Chromatography-Ultraviolet. J. Chromatogr. A 2020, 1613, 460695. [Google Scholar] [CrossRef] [PubMed]
- Mansour, F.R.; Danielson, N.D. Solvent-Terminated Dispersive Liquid-Liquid Microextraction: A Tutorial. Anal. Chim. Acta 2018, 1016, 1–11. [Google Scholar] [CrossRef]
- Fernández, P.; Regenjo, M.; Ares, A.; Fernández, A.M.; Lorenzo, R.A.; Carro, A.M. Simultaneous Determination of 20 Drugs of Abuse in Oral Fluid Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction. Anal. Bioanal. Chem. 2019, 411, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Asati, A.; Satyanarayana, G.N.V.; Srivastava, V.T.; Patel, D.K. Determination of Organochlorine Compounds in Fish Liver by Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Organic Droplet Coupled with Gas Chromatography-Electron Capture Detection. J. Chromatogr. A 2018, 1561, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Passarella, S.; Guerriero, E.; Quici, L.; Ianiri, G.; Cerasa, M.; Notardonato, I.; Protano, C.; Vitali, M.; Russo, M.V.; De Cristofaro, A.; et al. PAHs Presence and Source Apportionment in Honey Samples: Fingerprint Identification of Rural and Urban Contamination by Means of Chemometric Approach. Food Chem. 2022, 382, 132361. [Google Scholar] [CrossRef]
- Ianiri, G.; Di Fiore, C.; Passarella, S.; Notardonato, I.; Iannone, A.; Carriera, F.; Stillittano, V.; De Felice, V.; Russo, M.V.; Avino, P. Methodology for Determining Phthalate Residues by Ultrasound–Vortex-Assisted Dispersive Liquid–Liquid Microextraction and GC-IT/MS in Hot Drink Samples by Vending Machines. Analytica 2022, 3, 213–227. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Afshar Mogaddam, M.R.; Aghanassab, M. Deep Eutectic Solvent-Based Dispersive Liquid–Liquid Microextraction. Anal. Methods 2016, 8, 2576–2583. [Google Scholar] [CrossRef]
- Deng, W.; Yu, L.; Li, X.; Chen, J.; Wang, X.; Deng, Z.; Xiao, Y. Hexafluoroisopropanol-Based Hydrophobic Deep Eutectic Solvents for Dispersive Liquid-Liquid Microextraction of Pyrethroids in Tea Beverages and Fruit Juices. Food Chem. 2019, 274, 891–899. [Google Scholar] [CrossRef]
- Faraji, M. Determination of Some Red Dyes in Food Samples Using a Hydrophobic Deep Eutectic Solvent-Based Vortex Assisted Dispersive Liquid-Liquid Microextraction Coupled with High Performance Liquid Chromatography. J. Chromatogr. A 2019, 1591, 15–23. [Google Scholar] [CrossRef]
- Li, G.; Row, K.H. Utilization of Deep Eutectic Solvents in Dispersive Liquid-Liquid Micro-Extraction. TrAC Trends Anal. Chem. 2019, 120, 115651. [Google Scholar] [CrossRef]
- Sereshti, H.; SemnaniJazani, S.; Nouri, N.; Shams, G. Dispersive Liquid–Liquid Microextraction Based on Hydrophobic Deep Eutectic Solvents: Application for Tetracyclines Monitoring in Milk. Microchem. J. 2020, 158, 105269. [Google Scholar] [CrossRef]
- Ghane, M.; Mohadesi, A.; Ezoddin, M.; Ali Karimi, M.; Abdi, K. Dispersive Liquid–Liquid Microextraction with Back Extraction Based on in Situ Deep Eutectic Solvent Decomposition and Air-Assisted for Determination of Some Antidepressant Drugs in Biological Samples Prior to HPLC-UV. Int. J. Environ. Anal. Chem. 2022, 1–15. [Google Scholar] [CrossRef]
- Ragheb, E.; Shamsipur, M.; Jalali, F.; Sadeghi, M.; Babajani, N.; Mafakheri, N. Magnetic Solid-Phase Extraction Using Metal–Organic Framework-Based Biosorbent Followed by Ligandless Deep-Eutectic Solvent-Ultrasounds-Assisted Dispersive Liquid–Liquid Microextraction (DES-USA-DLLME) for Preconcentration of Mercury (II). Microchem. J. 2021, 166, 106209. [Google Scholar] [CrossRef]
- Ji, Y.; Zhao, M.; Li, A.; Zhao, L. Hydrophobic Deep Eutectic Solvent-Based Ultrasonic-Assisted Dispersive Liquid-Liquid Microextraction for Preconcentration and Determination of Trace Cadmium and Arsenic in Wine Samples. Microchem. J. 2021, 164, 105974. [Google Scholar] [CrossRef]
- Arpa, Ç.; Albayati, S.; Yahya, M. Effervescence-Assisted Dispersive Liquid-Liquid Microextraction Based on Deep Eutectic Solvent for Preconcentration and FAAS Determination of Copper in Aqueous Samples. Int. J. Environ. Anal. Chem. 2018, 98, 938–953. [Google Scholar] [CrossRef]
- Zhou, Z.; Ni, W.; Ji, Z.; Liu, S.; Han, X.; Li, X.; Mao, J. Development of a Rapid Method for Determination of Main Higher Alcohols in Fermented Alcoholic Beverages Based on Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Mass Spectrometry. Food Anal. Methods 2020, 13, 591–600. [Google Scholar] [CrossRef]
- Cao, H.; Chen, Z.; Kong, Y.; Wei, Z.; Ye, T.; Yuan, M.; Yu, J.; Wu, X.; Hao, L.; Yin, F.; et al. Dispersive Liquid-Liquid Microextraction (DLLME) Based on Solidification of Switchable Hydrophilicity Solvent Coupled with High-Performance Liquid Chromatography (HPLC) with Photodiode Array (PDA) Detection for the Determination of Pyrethroid Pesticides in Grains. Anal. Lett. 2023, 56, 1646–1659. [Google Scholar] [CrossRef]
- Qiao, Y.; Qiao, J.; Cao, J.; Cheng, F.; Cheng, Y.; Chang, M.; Meng, J.; Liu, J.; Yun, S.; Feng, C. Magnetic Effervescence-Assisted Switchable Solvent Dispersive Liquid-Liquid Microextraction for the Determination of Pyrethroids in Edible Fungi. J. Food Compos. Anal. 2023, 122, 105473. [Google Scholar] [CrossRef]
- Mudiam, M.K.R.; Ratnasekhar, C. Ultra Sound Assisted One Step Rapid Derivatization and Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Mass Spectrometric Determination of Amino Acids in Complex Matrices. J. Chromatogr. A 2013, 1291, 10–18. [Google Scholar] [CrossRef]
- Quigley, A.; Connolly, D.; Cummins, W. Determination of Selected Amino Acids in Milk Using Dispersive Liquid–Liquid Microextraction and GC-MS. Anal. Methods 2019, 11, 3538–3545. [Google Scholar] [CrossRef]
- Fattahi, N.; Assadi, Y.; Hosseini, M.R.M.; Jahromi, E.Z. Determination of Chlorophenols in Water Samples Using Simultaneous Dispersive Liquid–Liquid Microextraction and Derivatization Followed by Gas Chromatography-Electron-Capture Detection. J. Chromatogr. A 2007, 1157, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M. Dispersive Liquid-Liquid Microextraction Coupled with Derivatization: A Review of Different Modes, Applications, and Green Aspects. TrAC Trends Anal. Chem. 2018, 106, 169–182. [Google Scholar] [CrossRef]
- Jain, R.; Singh, M.; Kumari, A.; Tripathi, R.M. A Rapid and Cost-effective Method Based on Dispersive Liquid-liquid Microextraction Coupled to Injection Port Silylation-gas Chromatography-mass Spectrometry for Determination of Morphine in Illicit Opium. Anal. Sci. Adv. 2021, 2, 387–396. [Google Scholar] [CrossRef]
- Hewavitharana, G.G.; Perera, D.N.; Navaratne, S.B.; Wickramasinghe, I. Extraction Methods of Fat from Food Samples and Preparation of Fatty Acid Methyl Esters for Gas Chromatography: A Review. Arab. J. Chem. 2020, 13, 6865–6875. [Google Scholar] [CrossRef]
- Cao, D.; Xu, X.; Xue, S.; Feng, X.; Zhang, L. An in Situ Derivatization Combined with Magnetic Ionic Liquid-Based Fast Dispersive Liquid-Liquid Microextraction for Determination of Biogenic Amines in Food Samples. Talanta 2019, 199, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Duan, C.; Geng, X.; Li, S.; Ding, K.; Guan, Y. One Step Rapid Dispersive Liquid-Liquid Micro-Extraction with in-Situ Derivatization for Determination of Aflatoxins in Vegetable Oils Based on High Performance Liquid Chromatography Fluorescence Detection. Food Chem. 2019, 287, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Soares, A.G.; Ferreira, I.M.P.L.V.O. Quantitative Analysis of Glyphosate, Glufosinate and AMPA in Irrigation Water by in Situ Derivatization–Dispersive Liquid–Liquid Microextraction Combined with UPLC-MS/MS. Anal. Methods 2018, 10, 554–561. [Google Scholar] [CrossRef]
- Mercieca, G.; Odoardi, S.; Cassar, M.; Strano Rossi, S. Rapid and Simple Procedure for the Determination of Cathinones, Amphetamine-like Stimulants and Other New Psychoactive Substances in Blood and Urine by GC–MS. J. Pharm. Biomed. Anal. 2018, 149, 494–501. [Google Scholar] [CrossRef]
- Zong, Y.; Chen, J.; Hou, J.; Deng, W.; Liao, X.; Xiao, Y. Hexafluoroisopropanol-Alkyl Carboxylic Acid High-Density Supramolecular Solvent Based Dispersive Liquid-Liquid Microextraction of Steroid Sex Hormones in Human Urine. J. Chromatogr. A 2018, 1580, 12–21. [Google Scholar] [CrossRef]
Technique | Analyte | Matrix | EF | RDL 1 (μg kg−1) | LOD (μg kg−1) | LOQ (μg kg−1) | Recovery (%) | Analytical Technique | Ref. |
---|---|---|---|---|---|---|---|---|---|
QuEChERS | Organophosphorus and pyrethroid pesticides | Vegetables | 5–500 | 0.3–1.5 | 0.9–4.7 | 61.6–119.4 | GC–MS | [10] | |
Neonicotinoid | Grains | 0.04–40 | 0.009–0.02 | 0.003–0.08 | 62–118 | HPLC–MS | [11] | ||
PAH | Baby food | 1 –15 | 0.1–0.3 | 0.25–1.0 | 81–112 | GC–MS | [12] | ||
PAH | Crustacean | 2–200 | 1.5–2.1 | 4.7–6.3 | 72–104 | GC–MS | [13] | ||
MAE | Heterocyclic aromatic amines | Chicken nuggets | 165–210 | 5–500 | 2.9–4.0 | 90–97 | HPLC–MS | [14] | |
Organic additives | Mulch films | 0.025–50 μg g−1 | 0.0008–0.0586 μg g−1 | 0.003–0.195 μg g−1 | 93.0–109.8 | GC–MS | [15] | ||
UAE | Acrylamide | Bread | 10–500 R2 = 0.9982 | 0.54 | 1.89 | 98 | GC–MS | [7] | |
AFB1 | Egg | 0.1–20.0 | 0.12 | 0.32 | 91–94 | HPLC–UV | [8] | ||
Nichel | Environmental samples | 60 | 1.0–300 | 0.3 | 1.0 | UV-VIS | [9] | ||
SWE | PAHs | Sediment samples | 0.0139–0.2334 | 57.63–91.07 | GC-MS | [42] | |||
Endocrine disrupting | Sediment | 5–5000 R2 = 0.9920 | 0.006–0.639 | 0.021–2.130 | 42.3–131.3 | GC-MS | [43] | ||
ASE | vitamin E | Cosmetic products | 0.5–200 R2 > 0.9958 | 3–15 | 87–105 | HPLC-UV | [45] | ||
SPE | Cadmio | Water | 210 | 0.4–1000 | 0.1 | 0.4 | 91–107 | Electrochemical workstation | [16] |
Quinolones | Water | 0.05–10 μg L−1 | 0.011–0.015 μg L−1 | 89.67–100.5 | HPLC–UV | [17] | |||
Herbicides | Water | 1725–2065 | 0.02–10 | 0.003–0.006 μg L−1 | HPLC–UV | [18] | |||
Benzoic acid, ibuprofen, and mecoprop | Water | 0.048–4.60 μg L−1 | GC-MS | [19] | |||||
Glucocorticoids | Water | 1971–2857 | R2 > 0.9932 | 0.21–1.39 | 0.69–4.17 | 68–100 | HPLC–MS | [20] | |
SPME | Fragrance Allergens | Personal Care Products | 0.00025–0.0128 R2 ≥ 0.9950 | 0.019–0.060 | GC-MS | [21] | |||
Flavor Enhancers | Seafood | R2 ≥ 0.996 | 2.5–5.0 | 5.0–15.0 | 89.0–118.6 | GC-MS | [23] | ||
SBSE | PAH | Water | 18–717 | R2 ≥ 0.9920 | 0.5–8.7 ng L−1 | 1.7–28.7 ng L−1 | 84–115 | GC–MS | [24] |
Acidic pesticides | Water | 1232–1532 | R2 ≥ 0.9969 | 4–29 ng L−1 | 47–98 ng L−1 | 74–92 | GC–MS | [27] | |
MSPD | Chiral pesticides | Soils and river sediments | 2–500 | 0.22–1.54 | 0.91–4.00 | 87.0–104.1 | HPLC–MS | [28] | |
MEPS | Benzodiazepine | Low alcolic beveRage | 2.50–250 ng μL−1 | 0.86 and 1.91 ng μL−1 | 2.18–5.83 | HPLC-UV | [29] | ||
EME | Basic drugs | Biological fluids | 260–370 | 3.5–1000 | 1.0–3.0 | 3.5–10.0 | 52–74 | GC–MS | [31] |
Ionic target | Biological fluids | 21.5–35.5 | 0.25–500 | 0.1–0.5 μg L−1 | 0.25–1.0 μg L−1 | 43–70.8 | GC–MS | [32] | |
Biogenic Amines | Non–Alcoholic Beers | 36–41 | 1–5000 R2 < 9760 | 0.92–0.98 | 3.03–3.23 | 94–98 | GC–MS | [33] | |
SFOD | Steroids | Water | 44–112 | 0.01–20.0 μg mL−1 R2 ≥ 0.998 | 1.0–9.7 ng mL−1 | 3.33–32.30 ng mL−1 | 41.8–101.9 | HPLC–DAD | [35] |
Endocrine disrupting | Water | 38–134 | 3–300 R2 > 0.9996 | 0.96–2.30 | 2.92–7.02 | 91.8–103.4 | HPLC–PDA | [36] | |
Iodate | Table salt | 17.4–25.0 | 0.2–20 R2 > 0.9954 | 0.2 μg g−1 | 0.4 to 0.8 μg g−1 | 89.3–109.3 | UV–VIS | [37] | |
Pyrethroids | Cereals | R2 > 0.997 | 6.6–8.9 | 75.6–87.2 | HPLC–UV | [38] |
Type of Derivation | Target | Improvements |
---|---|---|
Silylation | Active hydrogen | Volatility, stability |
Methylation | Active hydrogen | Volatility, separation |
Acylation | Amine or hydroxyl groups | Detectability |
Etherification | Hydroxyl groups | Stability, detectability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Notardonato, I.; Avino, P. Dispersive Liquid–Liquid Micro Extraction: An Analytical Technique Undergoing Continuous Evolution and Development—A Review of the Last 5 Years. Separations 2024, 11, 203. https://doi.org/10.3390/separations11070203
Notardonato I, Avino P. Dispersive Liquid–Liquid Micro Extraction: An Analytical Technique Undergoing Continuous Evolution and Development—A Review of the Last 5 Years. Separations. 2024; 11(7):203. https://doi.org/10.3390/separations11070203
Chicago/Turabian StyleNotardonato, Ivan, and Pasquale Avino. 2024. "Dispersive Liquid–Liquid Micro Extraction: An Analytical Technique Undergoing Continuous Evolution and Development—A Review of the Last 5 Years" Separations 11, no. 7: 203. https://doi.org/10.3390/separations11070203
APA StyleNotardonato, I., & Avino, P. (2024). Dispersive Liquid–Liquid Micro Extraction: An Analytical Technique Undergoing Continuous Evolution and Development—A Review of the Last 5 Years. Separations, 11(7), 203. https://doi.org/10.3390/separations11070203