The Effect of Yinchenhao Decoction on the Pharmacokinetic Profile of Futibatinib by HPLC-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Materials and Reagents
2.2. Animal Experiments
2.3. Instrumentations
2.4. Analytical Conditions
2.5. Preparation of Standard and Quality Control (QC) Samples
2.6. Sample Preparation
2.7. Method Validation
2.7.1. Selectivity
2.7.2. Linearity and the LLOQ (Lower Limit of Quantification)
2.7.3. Precision and Accuracy
2.7.4. Recovery and Matrix Effect (ME)
2.7.5. Stability
2.8. Statistics and Analysis
3. Results
3.1. Method Validation
3.1.1. Selectivity
3.1.2. Linearity and LLOQ
3.1.3. Precision and Accuracy
3.1.4. Extraction Recovery and Matrix Effect (ME)
3.1.5. Stability
3.2. Pharmacokinetics of Herb–Drug Interaction
4. Discussion
4.1. Method Development and Optimization
4.2. Herb–Drug Interaction of YCHD and Futibatinib
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Everhart, J.E.; Ruhl, C.E. Burden of Digestive Diseases in the United States Part III: Liver, Biliary Tract, and Pancreas. Gastroenterology 2009, 136, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Raggi, C.; Invernizzi, P.; Andersen, J.B. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: Molecular networks and biological concepts. J. Hepatol. 2015, 62, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Kosters, A.; Karpen, S.J. The Role of Inflammation in Cholestasis: Clinical and Basic Aspects. Semin. Liver Dis. 2010, 30, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Blechacz, B. Cholangiocarcinoma: Current Knowledge and New Developments. Gut Liver 2017, 11, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma—Evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 2017, 15, 95–111. [Google Scholar]
- Lowery, M.A.; Ptashkin, R.; Jordan, E.; Berger, M.F.; Zehir, A.; Capanu, M.; Kemeny, N.E.; O’Reilly, E.M.; El-Dika, I.; Jarnagin, W.R.; et al. Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention. Clin. Cancer Res. 2018, 24, 4154–4161. [Google Scholar] [CrossRef] [PubMed]
- Borad, M.J.; Gores, G.J.; Roberts, L.R. Fibroblast growth factor receptor 2 fusions as a target for treating cholangiocarcinoma. Curr. Opin. Gastroenterol. 2015, 31, 264–268. [Google Scholar] [CrossRef]
- Sia, D.; Losic, B.; Moeini, A.; Cabellos, L.; Hao, K.; Revill, K.; Bonal, D.; Miltiadous, O.; Zhang, Z.; Hoshida, Y.; et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat. Commun. 2015, 6, 6087. [Google Scholar] [CrossRef]
- De, S.K. Futibatinib: A Potent and Irreversible Inhibitor of Fibroblast Growth Factor Receptors for Treatment of the Bile Duct Cancer. Curr. Med. Chem. 2024, 31, 666–670. [Google Scholar] [CrossRef]
- Sootome, H.; Fujita, H.; Ito, K.; Ochiiwa, H.; Fujioka, Y.; Ito, K.; Miura, A.; Sagara, T.; Ito, S.; Ohsawa, H.; et al. Futibatinib Is a Novel Irreversible FGFR 1-4 Inhibitor That Shows Selective Antitumor Activity against FGFR-Deregulated Tumors. Cancer Res. 2020, 80, 4986–4997. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, T.; Liao, X.; Li, Z.; Lin, R.; Qi, X.; Chen, G.; Sun, L.; Lin, L. Network pharmacology based research into the effect and mechanism of Yinchenhao Decoction against Cholangiocarcinoma. Chin. Med. 2021, 16, 13. [Google Scholar] [CrossRef]
- Qin, C.; Qiu, Q.; Li, P.; Mo, H.; Shi, J.; Liu, X.; Gu, B. Pharmacological Action and Clinical Application of Virgate Wormwood Decoction. Henan Tradit. Chin. Med. 2023, 43, 984–991. (In Chinese) [Google Scholar]
- Guo, Y.; Sun, F.; Li, X.; Wang, A. Clinical Application of Yinchenhao Decoction in Hepatobiliary Disease. J. Liaoning Univ. Tradit. Chin. Med. 2020, 22, 57–60. (In Chinese) [Google Scholar]
- Meng, S.; Xing, S. A classical prescription-a chemical study of Yinchenhao Decoction. Asia-Pac. Tradit. Med. 2009, 5, 173–176. (In Chinese) [Google Scholar]
- Ye, M.; Liu, C.; Liu, J.; Lu, F.; Xue, J.; Li, F.; Tang, Y. Scoparone inhibits the development of hepatocellular carcinoma by modulating the p38 MAPK/Akt/NF-κB signaling in nonalcoholic fatty liver disease mice. Environ. Toxicol. 2024, 39, 551–561. [Google Scholar] [CrossRef]
- Kuo, W.H.; Chou, F.P.; Young, S.C.; Chang, Y.C.; Wang, C.J. Geniposide activates GSH S-transferase by the induction of GST M1 and GST M2 subunits involving the transcription and phosphorylation of MEK-1 signaling in rat hepatocytes. Toxicol. Appl. Pharmacol. 2005, 208, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, J.; Xu, L.; Lin, S.; Xiang, Y.; Dai, X.; Liang, G.; Huang, X.; Zhu, J.; Zhao, C. Rhein shows potent efficacy against non-small-cell lung cancer through inhibiting the STAT3 pathway. Cancer Manag. Res. 2019, 11, 1167–1176. [Google Scholar] [CrossRef]
- Bhikshapathi, D.; Jogeswararao, P. Development of Stability Indicating Method for the Quantification of Futibatinib in K2EDTA Human Plasma by LC-MS/MS. Int. J. Pharm. Qual. Assur. 2023, 14, 927–932. [Google Scholar]
- Zhou, Z.; Liu, X.; Wu, T.; Que, Z.; Wu, Z.; Wu, W.; Fu, S.; Zhang, S.; Yang, Y.; Jiang, H.; et al. Herbal formula of Bushen Jianpi combined with sorafenib inhibits hepatocellular carcinoma growth by promoting cell apoptosis and blocking the cell cycle. J. Tradit. Chin. Med. 2021, 41, 194–202. [Google Scholar]
- Chua, Y.T.; Ang, X.L.; Zhong, X.M.; Khoo, K.S. Interaction between warfarin and Chinese herbal medicines. Singap. Med. J. 2015, 56, 11–18. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Bahleda, R.; Hierro, C.; Sanson, M.; Bridgewater, J.; Arkenau, H.T.; Tran, B.; Kelley, R.K.; Park, J.O.; Javle, M.; et al. Futibatinib, an Irreversible FGFR1-4 Inhibitor, in Patients with Advanced Solid Tumors Harboring FGF/FGFR Aberrations: A Phase I Dose-Expansion Study. Cancer Discov. 2022, 12, 402–415. [Google Scholar] [CrossRef]
- Javle, M.; King, G.; Spencer, K.; Borad, M.J. Futibatinib, an Irreversible FGFR1-4 Inhibitor for the Treatment of FGFR-Aberrant Tumors. Oncologist 2023, 28, 928–943. [Google Scholar] [CrossRef]
- Bi, Y.T.; Kang, Y.R.; Woshur, G.; Ding, H.Z.; Wang, S.S.; Qiu, X.J. Effect of Chaihu Shugan Pills on the Pharmacokinetics of Duloxetine and its Metabolite 4-Hydroxyduloxetine in Beagle Dogs: A Herb-Drug Interaction Study. Evid. Based Complement. Alternat. Med. 2022, 2022, 2350560. [Google Scholar] [CrossRef]
- Su, Y.; Wei, X.; Cheng, Q.; Qi, H.; Chen, J.; Qiu, X.-J. Exploring the Effect of Compound Glycyrrhizin and Silybinin on the Metabolism of Pexidartinib in Rats Based on CYP3A4 and CYP2C9. Adv. Pharmacol. Pharm. Sci. 2023, 2023, 6737062. [Google Scholar] [CrossRef]
- Yamamiya, I.; Hunt, A.; Takenaka, T.; Sonnichsen, D.; Mina, M.; He, Y.; Benhadji, K.A.; Gao, L. Evaluation of the Cytochrome P450 3A and P-glycoprotein Drug-Drug Interaction Potential of Futibatinib. Clin. Pharmacol. Drug Dev. 2023, 12, 966–978. [Google Scholar] [CrossRef]
- Yamamiya, I.; Hunt, A.; Yamashita, F.; Sonnichsen, D.; Muto, T.; He, Y.; Benhadji, K.A. Evaluation of the Mass Balance and Metabolic Profile of Futibatinib in Healthy Participants. Clin. Pharmacol. Drug Dev. 2023, 12, 927–939. [Google Scholar] [CrossRef]
- Rastogi, H.; Jana, S. Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome p450 activities. Phytother. Res. 2014, 28, 1873–1878. [Google Scholar] [CrossRef]
- Liu, Y.; Mapa, M.S.T.; Sprando, R.L. Anthraquinones inhibit cytochromes P450 enzyme activity in silico and in vitro. J. Appl. Toxicol. 2021, 41, 1438–1445. [Google Scholar] [CrossRef]
- Gao, L.N.; Zhang, Y.; Cui, Y.L.; Yan, K. Evaluation of genipin on human cytochrome P450 isoenzymes and P-glycoprotein in vitro. Fitoterapia 2014, 98, 130–136. [Google Scholar] [CrossRef]
- Song, W. Interpretation of the Guiding Principles of Analytical Method Validation Based on the Chinese Pharmacopoeia 2020 Version. Shandong Chem. Ind. 2021, 50, 95–96. (In Chinese) [Google Scholar]
Added (ng/mL) | Intraday | Interday | ||||
---|---|---|---|---|---|---|
Found (ng/mL) | RSD (%) | RE (%) | Found (ng/mL) | RSD (%) | RE (%) | |
1 | 1.0 ± 0.1 | 5.2 | −1.3 | 1.0 ± 0.02 | 2.4 | −1.0 |
2 | 2.0 ± 0.1 | 4.0 | −2.2 | 1.9 ± 0.1 | 5.2 | −3.1 |
20 | 19.4 ± 1.2 | 6.3 | −2.9 | 20.2 ± 0.5 | 2.5 | 0.9 |
160 | 158.3 ± 5.6 | 3.5 | −1.1 | 158.7 ± 1.7 | 1.1 | −0.8 |
Analyte | Added (ng/mL) | Recovery (%) | RSD (%) | Matrix Effect (%) | RSD (%) |
---|---|---|---|---|---|
2 | 84.5 ± 4.3 | 5.1 | 99.0 ± 3.3 | 3.3 | |
futibatinib | 20 | 87.4 ± 2.8 | 3.2 | 101.9 ± 4.3 | 4.2 |
160 | 89.3 ± 3.1 | 3.5 | 101.0 ± 4.2 | 4.1 |
Added (ng/mL) | Room Temperature, 6 h | 4 °C, 24 h | Three Freeze–Thaw Cycles | −20 °C,4 Weeks | ||||
---|---|---|---|---|---|---|---|---|
RSD (%) | RE (%) | RSD (%) | RE (%) | RSD (%) | RE (%) | RSD (%) | RE (%) | |
2 | 6.4 | 1.5 | 6.2 | −0.8 | 4.3 | −5.7 | 3.7 | −2.8 |
20 | 6.0 | −0.9 | 4.6 | −2.5 | 5.2 | −2.9 | 2.6 | −0.5 |
160 | 1.6 | 0.2 | 1.9 | 0.2 | 3.3 | −1.3 | 3.4 | −1.2 |
Parameters | Control Groups | Experimental Groups |
---|---|---|
t1/2 (h) | 3.88 ± 0.76 | 5.26 ±1.43 * |
Tmax (h) | 1.50 ± 0.32 | 1.25 ±0.27 |
Cmax (ng/mL) | 51.94 ± 7.18 | 73.15 ±13.38 ** |
MRT (0–t) (h) | 5.49 ± 0.53 | 5.52 ±0.51 |
MRT (0–∞) (h) | 7.03 ± 0.55 | 6.70 ±0.50 |
CLz/F (L/h/kg) | 3.76 ± 0.59 | 2.22 ± 0.76 * |
Vz/F (L/kg) | 21.51 ± 7.43 | 17.20 ± 8.28 |
AUC(0–t) (ng·h/mL) | 180.30 ± 29.65 | 321.03 ±111.92 * |
AUC(0–∞) (ng·h/mL) | 182.01 ± 29.04 | 332.55 ±112.90 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Liang, S.; Xu, J.; Zhai, Y.; Chen, J.; Qiu, X. The Effect of Yinchenhao Decoction on the Pharmacokinetic Profile of Futibatinib by HPLC-MS/MS. Separations 2024, 11, 213. https://doi.org/10.3390/separations11070213
Wang C, Liang S, Xu J, Zhai Y, Chen J, Qiu X. The Effect of Yinchenhao Decoction on the Pharmacokinetic Profile of Futibatinib by HPLC-MS/MS. Separations. 2024; 11(7):213. https://doi.org/10.3390/separations11070213
Chicago/Turabian StyleWang, Chunfu, Songmao Liang, Jiachen Xu, Yingfan Zhai, Jianghui Chen, and Xiangjun Qiu. 2024. "The Effect of Yinchenhao Decoction on the Pharmacokinetic Profile of Futibatinib by HPLC-MS/MS" Separations 11, no. 7: 213. https://doi.org/10.3390/separations11070213
APA StyleWang, C., Liang, S., Xu, J., Zhai, Y., Chen, J., & Qiu, X. (2024). The Effect of Yinchenhao Decoction on the Pharmacokinetic Profile of Futibatinib by HPLC-MS/MS. Separations, 11(7), 213. https://doi.org/10.3390/separations11070213