The Application of Polysaccharide Chiral Columns for the Separation of Fluorinated and Protonated Liquid Crystalline Racemic Esters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Racemic Mixtures
2.2. Chiral HPLC Separation
3. Results
3.1. ReproSil Chiral MIG Column, ACN:H2O Solvent System
3.2. ReproSil Chiral MIC Column, ACN:H2O Solvent System
3.3. Both Columns, HEX:IPA Solvent System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohij, T.; Ohnishi, A.; Ogasawara, M. Application of Polysaccharide-Based Chiral High-Performance Liquid Chromatography Columns for the Separation of Regio E/Z− and Enantio-Isomeric Mixtures of Allylic Compounds. ACS Omega 2022, 7, 5146–5153. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, M.; Enomoto, Y.; Uryu, M.; Yang, X.; Kataoka, A.; Ohnishi, A. Application of Polysaccharide-Based Chiral HPLC Columns for Separation of Nonenantiomeric Isomeric Mixtures of Organometallic Compounds. Organometallics 2019, 38, 512–518. [Google Scholar] [CrossRef]
- Nemeti, G.; Berkecz, R.; Shahmohammadi, S.; Forró, E.; Lindner, W.; Péter, A.; Ilisz, I. Enantioselective high-performance liquid chromatographic separation of fluorinated ß-phenylalanine derivatives utilizing Cinchona alkaloid-based ion-exchanger chiral stationary phases: Enantioselective separation of fluorinated ß-phenylalanine derivatives. J. Chromatogr. A 2022, 1670, 462974. [Google Scholar] [CrossRef] [PubMed]
- Sardella, R.; Ianni, F.; Lisanti, A.; Marinozzi, M.; Scorzoni, S.; Natalini, B. The effect of mobile phase composition in the enantioseparation of pharmaceutically relevant compounds with polysaccharide-based stationary phases. Biomed Chromatogr. 2014, 28, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Francotte, E.R. Enantioselective Chromatography as a Powerful Alternative for the Preparation of Drug Enantiomers. J. Chromatogr. A 2001, 906, 379–397. [Google Scholar] [CrossRef]
- Santos, R.; Pontes, K.V.; Nogueira, I.B.R. Enantiomers and Their Resolution. Encyclopedia 2022, 2, 151–188. [Google Scholar] [CrossRef]
- Clark, A.; Kitson, R.R.A.; Mistry, N.; Taylor, P.; Taylor, M.; Lloyd, M.; Akamune, C. Introduction to Stereochemistry, 1st ed.; Royal Society of Chemistry: Cambridge, UK, 2021; pp. 41–52. [Google Scholar]
- Liu, X. Organic Chemistry I; Kwantlen Polytechnic University: Surrey, BC, Canada, 2021; pp. 161–169. [Google Scholar]
- Maier, N.; Pilar, F.; Lindner, W. Separation of Enantiomers: Needs, Challenges, Perspectives. J. Chromatogr. A 2001, 906, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Waugh, J.; Keating, G.M.; Plosker, G.L.; Easthope, S.; Robinson, D.M. Pioglitazone: A review of its use in type 2 diabetes mellitus. Drugs 2006, 66, 85–109. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.; Tiritan, M.E.; Pinto, M.M.M.; Fernandes, C. Chiral Stationary Phases for Liquid Chromatography: Recent Developments. Molecules 2019, 24, 865. [Google Scholar] [CrossRef]
- Śliwka-Kaszyńska, M.; Momotko, M.; Szarmańska, J.; Boczkaj, G.; Kamiński, M. Review of the types of chiral stationary phases and the possibilities of their applications in liquid chromatography. Cam. Sep. 2015, 7, 99–128. [Google Scholar]
- Fanali, C.; D’Orazio, G.; Fanali, S. Chiral Separations Using Nano-Liquid Chromatography. Sci. Chromatogr. 2016, 8, 161–169. [Google Scholar] [CrossRef]
- Okamoto, Y.; Kawashima, M.; Hatada, K. Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: Phenylcarbamates of polysaccharides coated on silica gel. J. Am. Chem. Soc. 1984, 106, 5357–5359. [Google Scholar] [CrossRef]
- Park, J.H.; Whang, Y.C.; Jung, Y.J.; Okamoto, Y.; Yamamoto, C.; Carr, P.W.; McNeff, C.V. Separation of racemic compounds on amylose and cellulose dimethylphenylcarbamate-coated zirconia in HPLC. J. Sep. Sci. 2003, 26, 1331–1336. [Google Scholar] [CrossRef]
- Ali, I.; Aboul-Enein, H.Y. Immobilized Polysaccharide CSPs: An Advancement in Enantiomeric Separations. Curr. Pharm. Anal. 2007, 3, 71–82. [Google Scholar] [CrossRef]
- Ikai, T.; Yamamoto, C.; Kamigaito, M.; Okamoto, Y. Immobilized Polysaccharide-Based Chiral Stationary Phases for HPLC. Polym. J. 2006, 38, 91–108. [Google Scholar] [CrossRef]
- Khatiashvili, T.; Matarashvili, I.; Karchkhadze, M.; Farkas, T.; Chankvetadze, B. Comparative Study of Cellulose Tris(3-chloro-5-methylphenylcarbamate) Coated or Covalently Immobilized on Silica for the Separation of Enantiomers in High-Performance Liquid Chromatography. Chromatographia 2024, 87, 27–34. [Google Scholar] [CrossRef]
- Kažoka, H.; Turovska, B.; Upmanis, T. Separation of 4-substituted 5-methylpiracetam stereoisomers on polysaccharide-based chiral stationary phases. J. Chromatogr. Open 2024, 5, 100122. [Google Scholar] [CrossRef]
- Jurin, M.; Kontrec, D.; Roje, M. HPLC and SFC Enantioseparation of (±)-Trans-β-Lactam Ureas on Immobilized Polysaccharide-Based Chiral Stationary Phases—The Introduction of Dimethyl Carbonate as an Organic Modifier in SFC. Separations 2024, 11, 38. [Google Scholar] [CrossRef]
- Toribio, L.; Magdaleno, I.; Martín-Gómez, B.; Martín, M.T.; Valverde, S.; Ares, A.M. Study of Different Chiral Columns for the Enantiomeric Separation of Azoles Using Supercritical Fluid Chromatography. Separations 2023, 10, 9. [Google Scholar] [CrossRef]
- Jurin, M.; Kontrec, D.; Dražić, T.; Roje, M. Enantioseparation of syn- and anti-3,5-Disubstituted Hydantoins by HPLC and SFC on Immobilized Polysaccharides-Based Chiral Stationary Phases. Separations 2022, 9, 157. [Google Scholar] [CrossRef]
- Ibrahim, D.; Ghanem, A. On the Enantioselective HPLC Separation Ability of Sub-2 µm Columns: Chiralpak IG-U and ID-U. Molecules 2019, 24, 1287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, B.; Bhadury, P.S.; Hu, D.; Yang, S.; Shi, X.; Liu, D.; Jin, L. Analytical and semi-preparative enantioseparation of organic phosphonates on a new immobilized amylose based chiral stationary phase. J. Sep. Sci. 2008, 31, 2946–2952. [Google Scholar] [CrossRef] [PubMed]
- Urbańska, M.; Vaňkátová, P.; Kubíčková, A.; Kalíková, K. Synthesis, characterisation and supercritical fluid chromatography enantioseparation of new liquid crystalline materials. Liq. Cryst. 2020, 47, 1832–1843. [Google Scholar] [CrossRef]
- Vojtylová-Jurkovičová, T.; Vaňkátová, P.; Urbańska, M.; Hamplová, V.; Sýkora, D.; Bubnov, A. Effective control of optical purity by chiral HPLC separation for ester-based liquid crystalline materials forming anticlinic smectic phases. Liq. Cryst. 2008, 48, 43–53. [Google Scholar] [CrossRef]
- Urbańska, M. Separation of liquid crystalline racemic mixtures obtained on the basis of (R,S)-2-hexanol on amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilised on silica in high-performance liquid chromatography. Liq. Cryst. 2023, 50, 1893–1901. [Google Scholar] [CrossRef]
- Vojtylová, T.; Kašpar, M.; Hamplová, V.; Novotná, V.; Sýkora, D. Chiral HPLC for a study of the optical purity of new liquid crystalline materials derived from lactic acid. Phase Transit. 2014, 87, 758–769. [Google Scholar] [CrossRef]
- Vaňkátová, P.; Kalíková, K.; Kubíčková, A. Advantages of polar organic solvent chromatography for enantioseparation of chiral liquid crystals. J. Chromatogr. A 2023, 1709, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Urbańska, M. Optimization of Liquid Crystalline Mixtures Enantioseparation on Polysaccharide-Based Chiral Stationary Phases by Reversed-Phase Chiral Liquid Chromatography. Int. J. Mol. Sci. 2024, 25, 6477. [Google Scholar] [CrossRef]
- Vojtylová, T.; Niezgoda, I.; Galewski, Z.; Hamplová, V.; Sýkora, D. A new approach to the chiral separation of novel diazenes. J. Sep. Sci. 2015, 38, 4211–4215. [Google Scholar] [CrossRef]
- Vojtylová, T.; Hamplová, V.; Galewski, Z.; Korbecka, I.; Sýkora, D. Chiral separation of novel diazenes on a polysaccharide-based stationary phase in the reversed-phase mode. J. Sep. Sci. 2017, 40, 1465–1469. [Google Scholar] [CrossRef]
- Gąsowska, J.; Dąbrowski, R.; Drzewiński, W.; Filipowicz, M.; Przedmojski, J.; Kenig, K. Comparison of Mesomorphic Properties in Chiral and Achiral Homologous Series of High Tilted Ferroelectrics and Antiferroelectrics. Ferroelectrics 2004, 309, 83–93. [Google Scholar] [CrossRef]
- Dąbrowski, R.; Gąsowska, J.; Filipowicz, M.; Przedmojski, J.; Tykarska, M.; Otón, J.M.; Castillo, P.L.; Bennis, N. Comparison of phase situation in recently prepared chiral, racemic and achiral anticlinic high tilted compounds. Phase Trans. 2005, 78, 927–942. [Google Scholar] [CrossRef]
- Gąsowska, J.; Dziaduszek, J.; Drzewiński, W.; Filipowicz, M.; Dąbrowski, R.; Przedmojski, J.; Kenig, K. Influence of rigid core structure on layer tilt and mesomorphic properties in homologous series of three ring antiferroelectric esters. Proc. SPIE 2004, 5565, 72–78. [Google Scholar]
- Dąbrowski, R.; Gąsowska, J.; Otón, J.M.; Piecek, W.; Przedmojski, J.; Tykarska, M. High tilted antiferroelectric liquid crystalline materials. Displays 2004, 25, 9–19. [Google Scholar] [CrossRef]
- Ravisankar, P.; Anusha, S.; Supriya, K.; Kumar, U.A. Fundamental Chromatographic Parameters. Inter. J. Pharm. Sci. Rev. Res. 2019, 55, 46–50. [Google Scholar]
- Tang, S.; Jin, Z.; Sun, B.; Wang, F.; Tang, W. Preparation and evaluation of regioselectively substituted amylose derivatives for chiral separations. Chirality 2017, 29, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Ikai, T.; Okamoto, Y. Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. J. Chromatogr. A 2014, 1363, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Pelusoa, P.; Mashiko, V.; Aubert, E.; Cossu, S. High-performance liquid chromatography enantioseparation of atropisomeric 4,4′-bipyridines on polysaccharide-type chiral stationary phases: Impact of substituents and electronic properties. J. Chromatogr. A. 2012, 1251, 91–100. [Google Scholar] [CrossRef]
- Majors, R.E. Developments in preparative-scale chromatography: Columns and accessories. LC-GC Eur. 2004, 17, 630–638. [Google Scholar]
- Speybrouck, D.; Lipka, E. Preparative supercritical fluid chromatography: A powerful tool for chiral separations. J. Chromatogr. A 2016, 1467, 33–55. [Google Scholar] [CrossRef]
Acronym | [M − H]− | Acronym | [M + Na]+ |
---|---|---|---|
CH3BiPh (R,S) | 587 | CH3PhBi (R,S) | 611 |
C2H5BiPh (R,S) | 601 | C2H5PhBi (R,S) | 625 |
C4H9BiPh (R,S) | 630 | C4H9PhBi (R,S) | 653 |
C7H15BiPh (R,S) | 671 | C7H15PhBi (R,S) | 696 |
C2F5BiPh (R,S) | 691 | C4F9PhBi (R,S) | 816 |
C4F9BiPh (R,S) | 791 | C5F11PhBi (R,S) | 866 |
C7F15BiPh (R,S) | 942 | C7F15PhBi (R,S) | 965 |
ReproSil Chiral MIC | ReproSil Chiral MIG |
No. | Mobile Phase [v/v] | Injection Volume [µL] | Flow Rate [mL/min] | |
---|---|---|---|---|
ACN | H2O | |||
1 | 99 | 1 | 15–20 | 1 |
2 | 95 | 5 | ||
3 | 90 | 10 | ||
HEX | IPA | 10–20 | 1 | |
4 | 85 | 15 | ||
5 | 80 | 20 | ||
6 | 70 | 30 |
ReproSil Chiral MIG (ACN:H2O) | ||||||
---|---|---|---|---|---|---|
99:1 | 95:5 | 90:10 | ||||
tr1 [min] | tr2 [min] | tr1 [min] | tr2 [min] | tr1 [min] | tr2 [min] | |
CH3BiPh (R,S) | 16.249 | 24.047 | 19.213 | 29.732 | 38.991 | x |
C2H5BiPh (R,S) | 17.982 | - | 19.794 | 32.490 | 43.927 | x |
C4H9BiPh (R,S) | 21.064 | 34.482 | 24.200 | 41.358 | 65.211 | x |
C7H15BiPh (R,S) | 32.190 | 56.321 | 36.788 | 67.402 | * | * |
C2F5BiPh (R,S) | 6.575 | 8.010 | 7.004 | 8.360 | 15.802 | 25.353 |
C4F9BiPh (R,S) | 5.796 | 6.864 | 7.339 | 9.237 | 14.071 | 22.650 |
C7F15BiPh (R,S) | 6.228 | - | 5.896 | - | 16.045 | - |
CH3PhBi (R,S) | 13.870 | 24.105 | 16.030 | 30.678 | * | * |
C2H5PhBi (R,S) | 15.677 | 27.814 | 17.023 | 34.187 | * | * |
C4H9PhBi (R,S) | 18.922 | 35.141 | 27.073 | 69.253 | - | - |
C7H15PhBi (R,S) | 28.673 | 56.839 | 47.877 | 145.814 | - | - |
C4F9PhBi (R,S) | 5.446 | 6.449 | 6.653 | 9.741 | 12.486 | 22.448 |
C5F11PhBi (R,S) | 5.336 | 6.120 | 6.297 | 8.604 | 12.424 | 22.328 |
C7F15PhBi (R,S) | 5.635 | - | 7.343 | - | 15.815 | - |
99:1 | 95:5 | 90:10 | |
---|---|---|---|
CH3BiPh (R,S) | 4.896 | 7.013 | x |
C2H5BiPh (R,S) | - | 4.702 | x |
C4H9BiPh (R,S) | 5.964 | 8.418 | x |
C7H15BiPh (R,S) | 6.252 | 11.235 | * |
C2F5BiPh (R,S) | 2.362 | 2.723 | 6.030 |
C4F9BiPh (R,S) | 1.871 | 3.163 | 5.362 |
C7F15BiPh (R,S) | - | - | - |
CH3PhBi (R,S) | 4.874 | 8.138 | * |
C2H5PhBi (R,S) | 5.057 | 7.628 | * |
C4H9PhBi (R,S) | 5.662 | * | * |
C7H15PhBi (R,S) | 5.852 | * | * |
C4F9PhBi (R,S) | 1.488 | 3.219 | 4.151 |
C5F11PhBi (R,S) | 1.155 | 2.148 | 4.502 |
C7F15PhBi (R,S) | - | - | - |
99:1 | 95:5 | 90:10 | |||||||
---|---|---|---|---|---|---|---|---|---|
α | NS | NR | α | NS | NR | α | NS | NR | |
CH3BiPh (R,S) | 1.647 | 2981 | 2324 | 1.670 | 5367 | 4481 | 1.000 | - | - |
C2H5BiPh (R,S) | 1.000 | - | - | 1.784 | 1638 | 1088 | x | - | - |
C4H9BiPh (R,S) | 1.778 | 2929 | 1979 | 1.840 | 4210 | 4096 | x | - | - |
C7H15BiPh (R,S) | 1.848 | 2633 | 1870 | 1.926 | 3845 | 7680 | * | - | - |
C2F5BiPh (R,S) | 1.522 | 2643 | 2073 | 3.526 | 4231 | 3499 | 1.753 | 4025 | 2181 |
C4F9BiPh (R,S) | 1.871 | 2745 | 1544 | 1.467 | 2557 | 3472 | 1.782 | 3577 | 1608 |
C7F15BiPh (R,S) | 1.000 | - | - | 1.000 | - | - | 1.000 | - | - |
CH3PhBi (R,S) | 2.052 | 3207 | 993 | 2.630 | 2448 | 2394 | * | - | - |
C2H5PhBi (R,S) | 2.079 | 3516 | 1118 | 2.678 | 4268 | 1129 | * | - | - |
C4H9PhBi (R,S) | 2.115 | 3257 | 1019 | 1.000 | - | - | * | - | - |
C7H15PhBi (R,S) | 2.106 | 3033 | 962 | 1.000 | - | - | * | - | - |
C4F9PhBi (R,S) | 1.558 | 2607 | 784 | 1.571 | 2818 | 756 | 2.063 | 3477 | 1022 |
C5F11PhBi (R,S) | 1.075 | 2019 | 620 | 1.397 | 2021 | 470 | 2.083 | 2210 | 688 |
C7F15PhBi (R,S) | 1.000 | - | - | 1.000 | - | - | 1.000 | - | - |
99:1 | 95:5 | 90:10 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rs | α | NR | NS | Rs | α | NR | NS | Rs | α | NR | NS | |
CH3BiPh (R,S) | 0.284 | 1.062 | 1396 | 1256 | 0.140 | 1.048 | 344 | 907 | - | - | - | - |
C2H5BiPh (R,S) | - | - | - | - | - | - | - | - | - | - | - | - |
C4H9BiPh (R,S) | - | - | - | - | - | - | - | - | - | - | - | - |
C7H15BiPh (R,S) | - | - | - | - | 0.064 | 1.187 | 309 | 361 | - | - | - | - |
C2F5BiPh (R,S) | - | - | - | - | - | - | - | - | - | - | - | - |
C4F9BiPh (R,S) | - | - | - | - | - | - | - | - | - | - | - | - |
C7F15BiPh (R,S) | - | - | - | - | - | - | - | - | - | - | - | - |
CH3PhBi (R,S) | 1.855 | 1.274 | 2962 | 2823 | 1.615 | 1.133 | 7168 | 8689 | 1.480 | 1.091 | 7690 | 7925 |
C2H5PhBi (R,S) | 1.731 | 1.281 | 2341 | 2307 | 1.776 | 1.136 | 9521 | 8080 | 1.557 | 1.093 | 7813 | 7967 |
C4H9PhBi (R,S) | 1.775 | 1.271 | 2516 | 2458 | 2.417 | 1.199 | 8351 | 7716 | 1.583 | 1.091 | 7903 | 7993 |
C7H15PhBi (R,S) | 1.957 | 1.249 | 2500 | 2414 | 2.342 | 1.182 | 3612 | 4376 | 1.723 | 1.099 | 7275 | 7097 |
C4F9PhBi (R,S) | 0.267 | 1.260 | 1075 | 971 | 0.285 | 1.238 | 1459 | 1472 | 0.331 | 1.053 | 2576 | 2733 |
C5F11PhBi (R,S) | - | - | - | - | - | - | - | - | 0.336 | 1.040 | 1943 | 2149 |
C7F15PhBi (R,S) | - | - | - | - | - | - | - | - | 0.120 | 1.045 | 229 | 1809 |
ReproSil Chiral MIC (ACN:H2O) | ||||||
---|---|---|---|---|---|---|
99:1 | 95:5 | 90:10 | ||||
tr1 [min] | tr2 [min] | tr1 [min] | tr2 [min] | tr1 [min] | tr2 [min] | |
CH3BiPh (R,S) | 7.077 | 7.302 | 7.545 | 7.731 | 12.108 | - |
C2H5BiPh (R,S) | 7.560 | - | 7.650 | - | 13.201 | - |
C4H9BiPh (R,S) | 7.698 | - | 8.946 | - | 15.070 | - |
C7H15BiPh (R,S) | 9.004 | - | 10.624 | 10.773 | 18.365 | - |
C2F5BiPh (R,S) | 4.372 | - | 4.510 | - | 6.690 | - |
C4F9BiPh (R,S) | 4.167 | - | 4.145 | - | 4.007 | - |
C7F15BiPh (R,S) | 4.007 | - | 4.438 | - | 5.989 | - |
CH3PhBi (R,S) | 8.144 | 9.351 | 8.525 | 9.167 | 13.662 | 14.609 |
C2H5PhBi (R,S) | 8.306 | 9.592 | 8.940 | 9.647 | 14.940 | 16.025 |
C4H9PhBi (R,S) | 8.625 | 9.947 | 8.993 | 10.020 | 17.028 | 18.282 |
C7H15PhBi (R,S) | 10.203 | 11.954 | 10.679 | 12.389 | 22.796 | 24.728 |
C4F9PhBi (R,S) | 4.310 | 4.457 | 4.316 | 4.446 | 6.662 | 6.835 |
C5F11PhBi (R,S) | 4.352 | - | 4.784 | - | 6.610 | 6.810 |
C7F15PhBi (R,S) | 4.136 | - | 4.187 | - | 6.429 | 6.568 |
ReproSil Chiral MIG | ReproSil Chiral MIC | |||||||
---|---|---|---|---|---|---|---|---|
CH3BiPh (R,S) | CH3PhBi (R,S) | |||||||
Rs | α | NS | NR | Rs | α | NR | NS | |
70% HEX, 30% IPA | 0.608 | 1.047 | 8110 | 1886 | 1.334 | 1.082 | 5942 | 5867 |
80% HEX, 20% IPA | 0.458 | 1.037 | 2640 | 3796 | 1.942 | 1.110 | 7023 | 6980 |
85% HEX, 15% IPA | 1.289 | 1.092 | 4129 | 3403 | 2.484 | 1.123 | 7502 | 7930 |
ReproSil Chiral MIG | ReproSil Chiral MIC | |||
---|---|---|---|---|
CH3BiPh (R,S) | CH3PhBi (R,S) | |||
tr1 [min] | tr2 [min] | tr1 [min] | tr2 [min] | |
70% HEX, 30% IPA | 6.712 | 6.999 | 7.216 | 7.736 |
80% HEX, 20% IPA | 7.648 | 7.902 | 9.312 | 10.219 |
85% HEX, 15% IPA | 10.347 | 11.260 | 12.247 | 13.714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojda, E.; Urbańska, M. The Application of Polysaccharide Chiral Columns for the Separation of Fluorinated and Protonated Liquid Crystalline Racemic Esters. Separations 2024, 11, 214. https://doi.org/10.3390/separations11070214
Wojda E, Urbańska M. The Application of Polysaccharide Chiral Columns for the Separation of Fluorinated and Protonated Liquid Crystalline Racemic Esters. Separations. 2024; 11(7):214. https://doi.org/10.3390/separations11070214
Chicago/Turabian StyleWojda, Edyta, and Magdalena Urbańska. 2024. "The Application of Polysaccharide Chiral Columns for the Separation of Fluorinated and Protonated Liquid Crystalline Racemic Esters" Separations 11, no. 7: 214. https://doi.org/10.3390/separations11070214
APA StyleWojda, E., & Urbańska, M. (2024). The Application of Polysaccharide Chiral Columns for the Separation of Fluorinated and Protonated Liquid Crystalline Racemic Esters. Separations, 11(7), 214. https://doi.org/10.3390/separations11070214