Determination of Volatilome Profile in Carbonated Beverages Using n-Hexane as an Extractant by GC-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.1.1. Materials and Reagents
2.1.2. Instruments
2.2. Experimental Methods
2.2.1. Samples Preparation
2.2.2. Gas Chromatography Operation Conditions
2.2.3. Mass Spectroscopy Conditions
2.2.4. Experimental Factors
2.2.5. OAV Analysis
2.2.6. Principal Component Analysis
3. Results and Discussion
3.1. Optimization of Extraction Conditions
3.1.1. Extraction Temperature
3.1.2. Extraction Time
3.1.3. The Ratio of n-Hexane Solvent to Sample Volume
3.2. Responsive Surface Design
3.3. Chromatographic of GC-MS
3.3.1. Analysis of Volatile Aroma Components of Cola Carbonated Beverages
3.3.2. Analysis of Volatile Aroma Components of Orange-Flavor Carbonated Beverages
3.3.3. Analysis of Volatile Aroma Components of Lemon Flavor Beverages Samples
3.4. OAV Analyse
3.5. Principal Components Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharya, E.; Pal, U.; Dutta, R.; Bhowmik, P.C.; Mandal Biswas, S. Antioxidant, antimicrobial and DNA damage protecting potential of hot taste spices: A comparative approach to validate their utilization as functional foods. J. Food Sci. Technol. 2022, 59, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Vilela, A.; Bacelar, E.; Pinto, T.; Anjos, R.; Correia, E.; Goncalves, B.; Cosme, F. Beverage and Food Fragrance Biotechnology, Novel Applications, Sensory and Sensor Techniques: An Overview. Foods 2019, 8, 643. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Caporaso, N. Advances in Food Flavor Analysis. Appl. Sci. 2022, 12, 9004. [Google Scholar] [CrossRef]
- Mielby, L.A.; Wang, Q.J.; Jensen, S.; Bertelsen, A.S.; Kidmose, U.; Spence, C.; Byrne, D.V. See, Feel, Taste: The Influence of Receptacle Colour and Weight on the Evaluation of Flavoured Carbonated Beverages. Foods 2018, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Malaka, M.S.; Naidoo, K.; Kabuba, J. Extraction of Siphonochilus aethiopicus Essential Oil by Steam Distillation. Chem. Eng. Commun. 2017, 204, 813–819. [Google Scholar] [CrossRef]
- Ishizaka, T.D.; Kawashima, A.; Hishida, N.; Hamada, N. Measurement of total volatile organic compound (TVOC) in indoor air using passive solvent extraction method. Air Qual. Atmosphere Health 2018, 12, 173–187. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, J.; Zhong, Q.; Shen, L.; Zhou, T. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography. J. Sep. Sci. 2018, 41, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Silveira, G.; Loddi, S.; de Oliveira, C.D.R.; Zucoloto, A.D.; Fruchtengarten, L.V.G.; Yonamine, M. Headspace solid-phase microextraction and gas chromatography−mass spectrometry for determination of cannabinoids in human breast milk. Forensic Toxicol. 2017, 35, 125–132. [Google Scholar] [CrossRef]
- Hausch, B.J.; Lorjaroenphon, Y.; Cadwallader, K.R. Flavor chemistry of lemon-lime carbonated beverages. J. Agr. Food Chem. 2015, 63, 112–119. [Google Scholar] [CrossRef]
- Xie, Z.; Zeng, D.; Wang, J.; Zhao, M.; Feng, Y. Dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry (GC-MS) for the determination of soy sauce aroma compound. Food Control 2023, 152, 109838. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, X.; Mu, S.; Li, Q. Extraction and separation of petroleum pollutants from oil-based drilling cuttings using methanol/n-hexane solvent. Process. Saf. Environ. Prot. 2022, 168, 760–767. [Google Scholar] [CrossRef]
- Bouazzi, S.; El, M.R.; Nakbi, H.; Dhaouadi, H.; Joshi, R.K.; Hammami, S. Chemical Composition and Antioxidant Activity of Essential Oils and Hexane Extract of Onopordum arenarium from Tunisia. J. Chromatogr. Sci. 2020, 58, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, G.R.M.; Abdelgaleil, S.A.M.; Shawir, M.S.; El-Bakary, A.S.; Phillips, T.W. Residue analysis of the fumigant pesticide ethanedinitrile in different agricultural commodities using ether extraction and GC-MS. J. Stored Prod. Res. 2019, 83, 331–337. [Google Scholar] [CrossRef]
- Pang, X.; Yu, W.; Cao, C.; Yuan, X.; Qiu, J.; Kong, F.; Wu, J. Comparison of Potent Odorants in Raw and Ripened Pu-Erh Tea Infusions Based on Odor Activity Value Calculation and Multivariate Analysis: Understanding the Role of Pile Fermentation. J. Agric. Food Chem. 2019, 67, 13139–13149. [Google Scholar] [CrossRef] [PubMed]
- Gewers, F.L.; Ferreira, G.R.; De Arruda, H.F.; Silva, F.N.; Comin, C.H.; Amancio, D.R.; Costa, L.D.F. Principal Component Analysis: A Natural Approach to Data Exploration. ACM Comput. Surv. 2021, 54, 1–34. [Google Scholar] [CrossRef]
- Gomes, P.B.; Feitosa, M.L.; Silva, M.I.; Noronha, E.C.; Moura, B.A.; Venancio, E.T.; Rios, E.R.; de Sousa, D.P.; de Vasconcelos, S.M.; Fonteles, M.M.; et al. Anxiolytic-like effect of the monoterpene 1,4-cineole in mice. Pharmacol. Biochem. Be 2010, 96, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.J.; Cancellieri, M.A.; Chon, H.; Dagli, M.L.; Date, M.; Dekant, W.; et al. Update to RIFM fragrance ingredient safety assessment, fenchyl alcohol, CAS Registry Number 1632-73-1. Food Chem. Toxicol. 2022, 161 (Suppl. S1), 112897. [Google Scholar] [CrossRef]
- Ng, C.H.; Lee, S.L.; Tnah, L.H.; Ng, K.K.S.; Lee, C.T.; Madon, M. Genome size variation and evolution in Dipterocarpaceae. Plant Ecol. Divers. 2016, 9, 437–446. [Google Scholar] [CrossRef]
- Sales, A.; Felipe, L.D.O.; Bicas, J.L. Production, Properties, and Applications of α-Terpineol. Food Bioprocess Tech. 2020, 13, 1261–1279. [Google Scholar] [CrossRef]
- Bielig, H.J.; Askar, A.; Treptow, H. Aromaveränderungen von Orangensaft; Technische Universität Berlin: Berlin, Germany, 1974; p. 95. [Google Scholar]
- Giri, A.; Osako, K.; Ohshima, T. SPME Technique for Analyzing Headspace Volatiles in Fish Miso, a Japanese Fish Meat-Based Fermented Product. Biosci. Biotechnol. Biochem. 2010, 74, 1770–1776. [Google Scholar] [CrossRef]
- Averbeck, M.; Schieberle, P. Influence of different storage conditions on changes in the key aroma compounds of orange juice reconstituted from concentrate. Eur. Food Res. Technol. 2011, 232, 129–142. [Google Scholar] [CrossRef]
- Steinhaus, M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 2. [Google Scholar] [CrossRef]
- Munafo, J.J.; Didzbalis, J.; Schnell, R.J.; Schieberle, P.; Steinhaus, M. Characterization of the major aroma-active compounds in mango (Mangifera indica L.) cultivars Haden, White Alfonso, Praya Sowoy, Royal Special, and Malindi by application of a comparative aroma extract dilution analysis. J. Agr. Food Chem. 2014, 62, 4544–4551. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Lafon-Lafourcade, S.; Bertrand, A. Le débourbage des moûts de vendange blanche. Connaiss. Vigne Vin 1975, 9, 117–139. [Google Scholar] [CrossRef]
- Siegmund, B.; Pollinger-Zierler, B. Odor thresholds of microbially induced off-flavor compounds in apple juice. J. Agr. Food Chem. 2006, 54, 5984–5989. [Google Scholar] [CrossRef] [PubMed]
- Pokorný, J.; Velíšek, J.; Televantou, M.; Hrdličková, M.; Karnet, J.; Davidek, J. Prediction of sensory quality of orange beverage on the basis of gas chromatographic profiles. Nahrung 1978, 22, 661–667. [Google Scholar] [CrossRef]
- Koster, E.; Zoeteman, B.; Piet, G.; De Greef, E.; Van Oers, H.; Van Der Heijden, B.; Van Der Veer, A. Sensory evaluation of drinking water by consumer panels. Sci. Total Environ. 1981, 18, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Padrayuttawat, A.; Tokunaga, T. Seasonal Change of Volatile Compounds of Citrus sudachi during Maturation. Food Sci. Technol. Res. 2006, 5, 156–160. [Google Scholar] [CrossRef]
- Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W. The Volatile Constituents in the Peel and Pulp of a Green Thai Mango, Khieo Sawoei Cultivar (Mangifera indica L.). Food Sci. Technol. Int. Tokyo 2001, 7, 72–77. [Google Scholar] [CrossRef]
- Garnes–Portolés, F.; López–Cruz, C.; Sánchez–Quesada, J.; Espinós–Ferri, E.; Leyva–Pérez, A. Solid-catalyzed synthesis of isomers-free terpinen-4–ol. Mol. Catal. 2022, 533, 112785. [Google Scholar] [CrossRef]
- Li, P.H.; Lu, W.C. Effects of storage conditions on the physical stability of d-limonene nanoemulsion. Food Hydrocolloid 2016, 53, 218–224. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Hăncianu, M.; Costache, I.I.; Miron, A. Linalool: A review on a key odorant molecule with valuable biological properties. Flavour. Fragr. J. 2014, 29, 193–219. [Google Scholar] [CrossRef]
- Yang, M.Y.; Khine, A.A.; Liu, J.W.; Cheng, H.C.; Hu, A.; Chen, H.P.; Shih, T.L. Resolution of isoborneol and its isomers by GC/MS to identify “synthetic” and “semi-synthetic” borneol products. Chirality 2018, 30, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Ito, M. Appetite-enhancing Effects of trans-Cinnamaldehyde, Benzylacetone and 1-Phenyl-2-butanone by Inhalation. Planta Med. 2016, 82, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Mockute, D.; Bernotiene, G.; Judzentiene, A. The essential oil of Origanum vulgare L. ssp. vulgare growing wild in vilnius district (Lithuania). Phytochemistry 2001, 57, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Juergens, L.J.; Racké, K.; Tuleta, I.; Stoeber, M.; Juergens, U.R. Anti-inflammatory effects of 1, 8-cineole (eucalyptol) improve glucocorticoid effects in vitro: A novel approach of steroid-sparing add-on therapy for COPD and asthma. Synergy 2017, 5, 1–8. [Google Scholar] [CrossRef]
- Plotto, A.; Margaría, C.A.; Goodner, K.L.; Goodrich, R.; Baldwin, E.A. Odour and flavour thresholds for key aroma components in an orange juice matrix: Terpenes and aldehydes. Flavour Fragr. J. 2004, 19, 491–498. [Google Scholar] [CrossRef]
- Cometto-Muniz, J.E.; Abraham, M.H. Odor detection by humans of lineal aliphatic aldehydes and helional as gauged by dose-response functions. Chem. Senses 2010, 35, 289–299. [Google Scholar] [CrossRef]
- Boonbumrung, S.; Tamura, H.; Mookdasanit, J. Characteristic Aroma Components of the Volatile Oil of yellow Keaw Mango Fruits Determined by Limited Odor Unit Method. Food Sci. Technol. Res. 2001, 7, 200–206. [Google Scholar] [CrossRef]
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 2284.56 | 9 | 253.84 | 8.71 | 0.0141 | significant |
A—Extraction temperature | 355.11 | 1 | 355.11 | 12.19 | 0.0174 | |
B—Extraction time | 114.00 | 1 | 114.00 | 3.91 | 0.1048 | |
C—Solvent to sample volume ratio | 5.95 | 1 | 5.95 | 0.2043 | 0.6702 | |
AB | 74.82 | 1 | 74.82 | 2.57 | 0.1699 | |
AC | 1.0000 | 1 | 1.0000 | 0.0343 | 0.8603 | |
BC | 2.40 | 1 | 2.40 | 0.0825 | 0.7855 | |
A2 | 628.81 | 1 | 628.81 | 21.58 | 0.0056 | |
B2 | 700.62 | 1 | 700.62 | 24.05 | 0.0045 | |
C2 | 667.95 | 1 | 667.95 | 22.92 | 0.0049 | |
Residual | 145.68 | 5 | 29.14 | |||
Lack of Fit | 145.68 | 3 | 48.56 |
Samples | 1 | 2 | 3 | 4 | 5 | 6 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Retention Time/min | CAS | Compnents | Odor Thresholds | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV |
6.368 | 470-67-7 | 1,4-Cineole | 1 [20] | 1.37 | 1.37 | 0.88 | <1 | 1.69 | 1.69 | 7.94 | 7.94 | 1.35 | 1.35 | 7.15 | 7.15 |
6.379 | 3913-02-8 | 1-Octanol,2-butyl- | - | 1.58 | <1 | ||||||||||
6.45 | 99-87-6 | P-Cymene | 0.00501 [21] | 0.98 | 196 | 0.90 | 180 | 1.88 | 376 | 1.86 | 372 | 5.97 | 1194 | ||
6.468 | 5989-27-5 | D-limonene | 0.034 [22] | 24.88 | 731.7 | 37.31 | 1097.3 | 2.96 | 87 | 23.09 | 679.1 | 34.48 | 1014.1 | ||
6.55 | 470-82-6 | 1,8-Cineole | 0.0011 [23] | 8.08 | 7345.4 | 6.19 | 5627.2 | 76.88 | 69,818 | ||||||
6.769 | 99-85-4 | G-Terpinene | 1 [24] | 4.72 | 4.72 | 0.81 | <1 | 4.49 | 4.49 | 7.37 | 7.37 | ||||
7.105 | 586-62-9 | Terpinolene | 0.2 [24] | 0.48 | 2.4 | 1.99 | 9.95 | ||||||||
7.129 | 78-70-6 | Linalool | 0.1 [25] | 0.64 | 6.4 | 1.60 | 1600 | 2.25 | 22.50 | 3.00 | 30.00 | ||||
7.345 | 1632-73-1 | Fenchylalcohol | 0.0032 [26] | 2.29 | 715.6 | 1.13 | 353.1 | 2.28 | 712.5 | 4.38 | 1368.7 | 1.27 | 396.8 | 4.79 | 1496.8 |
7.460 | 586-82-3 | 3-Cyclohexen-1-ol,1-methyl-4-(1-Methylethyl)- | - | 0.63 | 1.89 | 1.81 | |||||||||
7.584 | 464-49-3 | (+)-2-Bornanone | - | 20.86 | |||||||||||
7.602 | 138-87-4 | Cyclohexanol,1-methyl-4-(1-methylethenyl)- | 6 [27] | 1.95 | <1 | 0.87 | <1 | 1.72 | <1 | 3.98 | <1 | 6.52 | 1.08 | ||
7.672 | 465-31-6 | Bicyclo[2.2.1]heptan-2-ol,2,3,3-trimethyl- | - | 0.68 | <1 | 0.31 | <1 | 1.16 | <1 | 1.16 | <1 | ||||
7.714 | 1200-67-5 | 2-Formate,(1R,2R,4R)-rel- | - | 0.74 | <1 | ||||||||||
7.771 | 124-76-5 | ISoborneo | 0.016 [28] | 1.13 | 70.6 | ||||||||||
7.81 | 507-70-0 | Borneol | 0.18 [29] | 1.67 | 9.27 | 0.84 | 4.66 | 1.72 | 9.55 | 3.13 | 17.3 | 1.67 | 9.27 | 3.84 | 21.3 |
7.883 | 562-74-3 | Terpinen-4-ol | 1.2 [30] | 5.52 | 4.6 | 3.32 | 2.7 | 1.95 | 1.62 | 4.67 | 3.89 | 6.42 | 5.35 | ||
7.967 | 98-55-5 | α-Terpinol | 1.2 [22] | 31.90 | 26.58 | 17.33 | 14.4 | 28.67 | 23.89 | 71.55 | 59.62 | 37.99 | 31.5 | 104.80 | 87.3 |
8.662 | 1014-60-4 | Benzene,1,3-bis(1,1-dimethylethyl)- | - | 2.01 | <1 | ||||||||||
8.64 | 14371-10-9 | trans-Cinnamaldehyde | - | 0.68 | <1 | 1.19 | <1 | ||||||||
9.437 | 97-53-0 | Eugenol | 0.0025 [23] | 5.64 | 2256 | ||||||||||
10.03 | 607-91-0 | Myristicin | 0.088 [31] | 1.51 | 17.1 | 1.10 | 12.5 | ||||||||
10.063 | 121-00-6 | 3-Tertbutyl-4-hydroxyanisole | - | 1.84 | <1 |
Samples | 7 | 8 | 9 | 10 | 11 | 12 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Retention Time/min | CAS | Compnents | Odor Thresholds | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV |
6.08 | 123-35-3 | Myrcene | 0.0012 [23] | 3.13 | 2608.3 | 1.22 | 1016.6 | 0.43 | 358.3 | 0.12 | 100 | 5.61 | 4675 | ||
6.208 | 124-13-0 | Octanal | 0.23 [40] | 4.08 | 17.7 | 1.25 | 5.43 | 21.14 | 91.91 | 4.44 | 19.13 | ||||
6.468 | 5989-27-5 | D-Limonene | 0.034 [22] | 151.67 | 4460.8 | 110.52 | 3250.8 | 31.14 | 923.52 | 0.37 | 10.88 | 33.12 | 974.1 | 393.28 | 11,567 |
6.769 | 99-85-4 | G-Terpinene | 1 [24] | 1.85 | 1.85 | 4.63 | 4.63 | ||||||||
7.105 | 586-62-9 | Terpinolene | 0.2 [24] | 1.59 | 7.95 | ||||||||||
7.155 | 78-70-6 | Linalool | 0.1 [25] | 7.41 | 74.1 | 5.50 | 55 | 11.47 | 114.7 | 1.02 | 10.2 | 4.61 | 46.1 | ||
7.165 | 124-19-6 | Nonanal | 0.0031 [31] | 2.68 | 1072 | ||||||||||
7.602 | 138-87-4 | Cyclohexanol,1-methyl-4-(1-methylethenyl)- | 6 [27] | 4.38 | <1 | 1.25 | <1 | 0.63 | <1 | 3.86 | <1 | 7.84 | 1.3 | ||
7.690 | 65-85-0 | Benzoic acid | - | 7.18 | <1 | ||||||||||
7.834 | 20126-76-5 | 3-Cyclohexen-1-ol,4-methyl-1-(1-methylethyl)-, (1R)- | - | 1.10 | <1 | 4.57 | <1 | ||||||||
7.849 | 562-74-3 | Terpinen-4-ol | 1.2 [30] | 0.22 | <1 | ||||||||||
7.967 | 98-55-5 | α-Terpinol | 1.2 [22] | 36.78 | 30.65 | 13.26 | 11.05 | 5.41 | 4.5 | 8.35 | 6.95 | 49.51 | 41 | 71.84 | 59.1 |
8.04 | 112-31-2 | Decyl aldehyde | 0.2 [40] | 7.22 | 36.1 | 2.87 | 14.35 | 1.15 | 5.75 | 0.17 | <1 | 9.77 | 48.85 | ||
8.651 | 2111-75-3 | 4-(1-Methylethenyl)-1-cyclohexene-1-carboxaldehyde | 0.03 [41] | 1.93 | 64.3 | ||||||||||
10.522 | 142-50-7 | Cis-nerolidol | - | 0.63 | <1 |
Samples | 15 | 16 | 17 | 18 | 19 | 20 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Retention Time/min | CAS | Compnents | Odor Thresholds | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV | Concentration (μg/mL) | OAV |
6.208 | 124-13-0 | Octanal | 0.23 [40] | 1.03 | 274.6 | 1.30 | 346.6 | ||||||||
6.221 | 691-37-2 | 1-Pentene, 4-methyl- | - | 0.91 | <1 | ||||||||||
6.368 | 470-67-7 | 1,4-Cineole | 1 [20] | 2.94 | 2.94 | ||||||||||
6.45 | 99-87-6 | P-Cymene | 0.00501 [21] | 0.39 | 77.84 | ||||||||||
6.52 | 5989-27-5 | D-Limonene | 0.034 [22] | 4.02 | 118.23 | 2.43 | 71.7 | 0.35 | 10.29 | 1.39 | 40.82 | 4.63 | 136.1 | ||
6.551 | 470-82-6 | 1,8 Cineole | 0.0011 [23] | 3.36 | |||||||||||
7.155 | 78-70-6 | Linalool | 0.1 [25] | 3.48 | 34.8 | 3.32 | 33.2 | 1.41 | 14.1 | 3.26 | 32.6 | 0.75 | 7.5 | ||
7.345 | 1632-73-1 | Fenchyl alcohol | 0.0032 [6] | 2.49 | 778.12 | 0.57 | 178.12 | 0.58 | 181.25 | 1.04 | 325 | 0.33 | 103.125 | ||
7.507 | 586-82-3 | 3-Cyclohexen-1-ol,1-methyl-4-(1-methylethyl)- | - | 7.16 | <1 | 1.03 | <1 | 1.28 | <1 | ||||||
7.602 | 138-87-4 | Cyclohexanol,1-methyl-4-(1-methylethenyl)- | 6 [27] | 6.47 | 1.07 | 0.51 | <1 | 0.98 | <1 | ||||||
7.714 | 124-76-5 | Isoborneol | 0.016 [28] | 1.27 | 79.38 | 0.97 | 60.62 | ||||||||
7.808 | 507-70-0 | Borneol | 0.18 [29] | 7.37 | 40.94 | ||||||||||
7.895 | 562-74-3 | Terpinen-4-ol | 1.2 [30] | 11.10 | 9.25 | 1.80 | 1.5 | 2.51 | 2.09 | 1.23 | 1.02 | ||||
7.967 | 98-55-5 | α-Terpinol | 1.2 [22] | 120.41 | 100 | 15.08 | 12.56 | 16.26 | 13.55 | 29.63 | 24.69 | 8.77 | 7.31 | 1.66 | 1.38 |
8.04 | 112-31-2 | Decyl aldehyde | 0.2 [40] | 12.50 | 4.17 | ||||||||||
8.316 | 106-26-3 | (z)-3,7-Dimethylocta-2,6-dienal | 0.053 [41] | 2.66 | 50.19 | ||||||||||
8.534 | 141-27-5 | Alpha-citral | 0.0032 [24] | 1.63 | 50.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, L.; Meng, X.; Luo, H.; Liu, Q.; Zhang, L.; Li, X.; Xu, Y.; Li, G. Determination of Volatilome Profile in Carbonated Beverages Using n-Hexane as an Extractant by GC-MS. Separations 2024, 11, 231. https://doi.org/10.3390/separations11080231
Mu L, Meng X, Luo H, Liu Q, Zhang L, Li X, Xu Y, Li G. Determination of Volatilome Profile in Carbonated Beverages Using n-Hexane as an Extractant by GC-MS. Separations. 2024; 11(8):231. https://doi.org/10.3390/separations11080231
Chicago/Turabian StyleMu, Li, Xianglong Meng, Huihong Luo, Qianqian Liu, Li Zhang, Xin Li, Ying Xu, and Gang Li. 2024. "Determination of Volatilome Profile in Carbonated Beverages Using n-Hexane as an Extractant by GC-MS" Separations 11, no. 8: 231. https://doi.org/10.3390/separations11080231
APA StyleMu, L., Meng, X., Luo, H., Liu, Q., Zhang, L., Li, X., Xu, Y., & Li, G. (2024). Determination of Volatilome Profile in Carbonated Beverages Using n-Hexane as an Extractant by GC-MS. Separations, 11(8), 231. https://doi.org/10.3390/separations11080231