Optimizing Vertical Zone Refining for Ultra-High-Purity Tin: Numerical Simulations and Experimental Analyses
Abstract
:1. Introduction
2. Numerical Simulations and Experimental Procedure
3. Result and Discussion
3.1. Numerical Simulation of Processing Parameters’ Impact
3.2. Vertical Zone Refining Experiments for 7N-Grade Ultra-High-Purity Tin
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Versolato, O.O. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography. Plasma Sources Sci. Technol. 2019, 28, 083001. [Google Scholar] [CrossRef]
- Flosdorf, E.W.; Palmer, A.E. Purification of materials by vacuum distillation. J. Rheol. 1932, 3, 205. [Google Scholar] [CrossRef]
- Price, J. Removal of impurities from tin by vacuum distillation. Nature 1952, 169, 792. [Google Scholar] [CrossRef]
- Jia, G.B.; Yang, B.; Liu, D.C. Deeply removing lead from Pb-Sn alloy with vacuum distillation. Trans. Nonferr. Metal. Soc. 2013, 23, 1822–1831. [Google Scholar] [CrossRef]
- Nan, C.B.; Yang, H.W.; Yang, B.; Liu, D.C.; Xiong, H. Experimental and modeling vapor-liquid equilibria: Separation of Bi from Sn by vacuum distillation. Vacuum 2017, 135, 109–114. [Google Scholar] [CrossRef]
- Pu, Z.H.; Han, J.B.; Li, Y.F.; Dai, Y.N.; Yang, B.; Wang, A.X. Removal of arsenic from crude tin by vacuum distillation. Mater. Trans. 2018, 59, 311–315. [Google Scholar] [CrossRef]
- You, Y.J.; Pu, Z.H.; Li, Y.F.; Yang, B.; Xu, J.J. Study on separation of Sn-Sb alloy by vacuum distillation. In 10th International Symposium on High-Temperature Metallurgical Processing, The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2019; pp. 361–370. [Google Scholar]
- Filzwieser, A.; Filzwieser, I.; Konetschnik, S. New technology for electrorefining of copper. JOM 2012, 64, 1290–1295. [Google Scholar] [CrossRef]
- Gana, R.E.; Figueroa, M.G.; Kattan, L.; Orpinas, J.M. The anode-support system: An alternative for the electrorefining of tin in sulphuric acid medium. J. Appl. Electrochem. 1993, 23, 60–65. [Google Scholar] [CrossRef]
- Kulcsar, T.; Toth, G.B.; Kekesi, T. Complex evaluation and development of electrolytic tin refining in acidic chloride media for processing tin-based scrap from lead-free soldering. Miner. Process. Extr. Metall. 2016, 125, 228–237. [Google Scholar] [CrossRef]
- Rimaszeki, G.; Kulcsar, T.; Kekesi, T. Investigation and optimization of tin electrorefining in hydrochloric acid solutions. J. Appl. Electrochem. 2012, 42, 573–584. [Google Scholar] [CrossRef]
- Zhang, X.X.; Friedrich, S.; Friedrich, B. Production of high purity metals: A review on zone refining process. J. Cryst. Process Technol. 2018, 8, 33–55. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, J.Y.; Xu, J.J.; Li, Y.F.; Pu, Z.H.; Xu, B.Q.; Yang, B. Preparation of high-purity tin by zone melting. Russ. J. Non-Ferr. Met. 2020, 61, 9–20. [Google Scholar] [CrossRef]
- Lee, H.Y.; Oh, J.K.; Lee, D.H. Purification of tin by zone refining with development of a new model. Metall. Trans. B 1990, 21, 455–461. [Google Scholar] [CrossRef]
- Cheung, T.; Cheung, N.; Tobar, C.M.T.; Mei, P.R.; Garcia, A. Zone refining of tin: Optimization of zone length by a genetic algorithm. Mater. Manuf. Process. 2013, 28, 746–752. [Google Scholar] [CrossRef]
- Shang, Z.W.; Lian, Z.H.; Li, M.J.; Han, K.; Zheng, H.X. Machine-learning-assisted multi-objective optimization in vertical zone refining of ultra-high purity indium. Sep. Purif. Technol. 2023, 305, 122430. [Google Scholar] [CrossRef]
- Li, M.X.; Tian, Q.L.; Wu, M.Z.; Peng, J.B.; Zhang, J.T.; Chen, L.S.; Lu, X.W.; Xu, Z.S.; Zheng, H.X. Numerical simulation analysis on solute redistribution of In–1 wt%Sn alloy during multipass vertical zone refining process. J. Cryst. Growth 2021, 565, 126156. [Google Scholar] [CrossRef]
- Wen, J.J.; Wu, M.Z.; Peng, J.B.; Zheng, H.X. Purification of high-purity tin via vertical zone refining. Separations 2023, 10, 380. [Google Scholar] [CrossRef]
- Massalski, T.; Murray, J.; Bennett, L.; Baker, H. Binary Alloy Phase Diagrams; American Society for Metals: Detroit, MI, USA, 1986; Volume 3, p. 2874. [Google Scholar]
- Hoshino, Y.; Utsunomiya, T. Purification of tin by a new method of zone refining. Sep. Sci. Technol. 1980, 15, 1521–1531. [Google Scholar] [CrossRef]
- Jeong, C.H.; Kang, K.; Park, U.J.; Lee, H.J.; Kim, H.S.; Park, J.Y.; Lee, S.H. Numerical investigation on the evolution of thin liquid layer and dynamic behavior of an electro-thermal drilling probe during close-contact heat transfer. Appl. Sci. 2021, 11, 3443. [Google Scholar] [CrossRef]
- Voller, V.R.; Beckerman, C. Approximate models of microsegregation with coarsening. Metall. Mater. Trans. A 1999, 30, 3016. [Google Scholar] [CrossRef]
- Voller, V.R. On a general back-diffusion parameter. J. Cryst. Growth 2001, 226, 562–568. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Saitou, Y.; Sugimoto, Y.; Kumagawa, M. Analysis of impurity concentration distributions in pulled semiconductor crystals. J. Electron. Mater. 1990, 19, 145–149. [Google Scholar] [CrossRef]
- Watauchi, S.; Tanaka, I.; Hayashi, K.; Hirano, M.; Hosono, H. Crystal growth of Ca12Al14O33 by the floating zone method. J. Cryst. Growth 2002, 237, 801–805. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | Unit |
---|---|---|---|
Solid density | ρ0 | 7.298 × 103 | kg/m3 |
Specific heat | CP | 2.26 × 102 | J/(kg·K) |
Thermal conductivity | k | 67 | W/(m·K) |
Viscosity | μ | 1.593 × 10−3 | kg/(m·s) |
Solute diffusivity in liquid phase | Dl | 3 × 10−9 | m2/s |
Solute diffusivity in solid phase | Ds | 1 × 10−12 | m2/s |
Thermal expansion coefficient | βT | 9.5 × 10−5 | /K |
latent heat of melting | ΔHf | 2.88 × 104 | J/kg |
Solute expansion coefficient | βc | 3.8 × 10−3 | /(wt.%) |
Solidus temperature | Ts | 227.5 | °C |
Liquidus temperature | TL | 231.5 | °C |
Equilibrium partition coefficient | k0 | 0.30 | - |
Heater Temperature (°C) | Pulling Rate (µm/s) | |
---|---|---|
SIM-410-20 | 410 | 20 |
SIM-420-20 | 420 | 20 |
SIM-415-10 | 415 | 10 |
SIM-415-30 | 415 | 30 |
Heater Temperature (°C) | Pulling Rate (µm/s) | |
---|---|---|
VZR-410-10 | 410 | 10 |
VZR-405-10 | 405 | 10 |
VZR-405-5 | 405 | 5 |
6N-Grade Sn Starting Material | VZR-410-10 | VZR-405-10 | VZR-405-5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bottom | Middle | Top | Bottom | Middle | Top | Bottom | Middle | Top | ||
Co | 0.001 | — | 0.001 | 0.002 | — | — | 0.003 | — | 0.002 | 0.005 |
Zn | — | — | — | — | — | — | — | — | — | — |
Ag | 0.001 | — | — | 0.002 | — | — | 0.003 | — | — | 0.02 |
Cu | 0.01 | 0.002 | 0.009 | 0.06 | 0.002 | 0.003 | 0.04 | — | — | 0.63 |
Ca | — | — | — | — | — | — | — | — | — | — |
Al | 0.005 | — | — | 0.006 | — | 0.002 | 0.007 | 0.002 | 0.001 | 0.006 |
Mg | — | — | — | — | — | — | — | — | — | — |
Ni | 0.007 | 0.001 | 0.006 | 0.004 | — | 0.002 | 0.01 | — | — | 0.34 |
Pb | 0.005 | — | — | 0.004 | — | — | 0.008 | — | — | 0.01 |
Au | — | — | — | — | — | — | — | — | — | — |
Fe | 0.13 | 0.06 | 0.12 | 0.97 | 0.02 | 0.06 | 0.98 | — | 0.01 | 2.6 |
In | — | — | — | — | — | — | — | — | — | — |
Bi | 0.005 | 0.003 | 0.01 | 0.02 | 0.002 | 0.005 | 0.02 | 0.003 | 0.003 | 0.03 |
Sb | 0.08 | 0.09 | 0.08 | 0.05 | 0.11 | 0.09 | 0.06 | 0.08 | 0.08 | 0.08 |
As | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.04 | 0.02 | 0.01 | 0.05 |
Total | 0.264 | 0.176 | 0.246 | 1.146 | 0.154 | 0.182 | 1.171 | 0.105 | 0.106 | 3.771 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Wen, J.; He, Q.; Wu, M.; Chen, L.; Bao, Y.; Zheng, H. Optimizing Vertical Zone Refining for Ultra-High-Purity Tin: Numerical Simulations and Experimental Analyses. Separations 2024, 11, 273. https://doi.org/10.3390/separations11090273
Yao Y, Wen J, He Q, Wu M, Chen L, Bao Y, Zheng H. Optimizing Vertical Zone Refining for Ultra-High-Purity Tin: Numerical Simulations and Experimental Analyses. Separations. 2024; 11(9):273. https://doi.org/10.3390/separations11090273
Chicago/Turabian StyleYao, Yu, Jiajun Wen, Qi He, Meizhen Wu, Lishi Chen, Yuxu Bao, and Hongxing Zheng. 2024. "Optimizing Vertical Zone Refining for Ultra-High-Purity Tin: Numerical Simulations and Experimental Analyses" Separations 11, no. 9: 273. https://doi.org/10.3390/separations11090273
APA StyleYao, Y., Wen, J., He, Q., Wu, M., Chen, L., Bao, Y., & Zheng, H. (2024). Optimizing Vertical Zone Refining for Ultra-High-Purity Tin: Numerical Simulations and Experimental Analyses. Separations, 11(9), 273. https://doi.org/10.3390/separations11090273