Photocatalytic Degradation of Levofloxacin and Inactivation of Enterococci Levofloxacin-Resistant Bacteria Using Pure Rare-Earth Oxides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalysts Preparation Procedure
2.2. Characterization Techniques
2.3. Experimental Set-Up for Photocatalytic Tests
2.4. Bacterial Count and Inactivation Test
3. Results
3.1. Photocatalytic Materials Characterization
3.2. Levofloxacin Photodegradation Results
3.3. Photocatalytic Inactivation Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lofrano, G.; Pedrazzani, R.; Libralato, G.; Carotenuto, M. Advanced oxidation processes for antibiotics removal: A review. Curr. Org. Chem. 2017, 21, 1054–1067. [Google Scholar] [CrossRef]
- Szczepanowski, R.; Linke, B.; Krahn, I.; Gartemann, K.H.; Gützkow, T.; Eichler, W.; Pühler, A.; Schlüter, A. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 2009, 155, 2306–2319. [Google Scholar] [CrossRef] [PubMed]
- Jyoti, K.; Soni, K.; Chandra, R. Pharmaceutical industrial wastewater exhibiting the co-occurrence of biofilm-forming genes in the multidrug-resistant bacterial community poses a novel environmental threat. Aquat. Toxicol. 2024, 273, 107019. [Google Scholar] [CrossRef] [PubMed]
- Codelia-Anjum, A.; Lerner, L.B.; Elterman, D.; Zorn, K.C.; Bhojani, N.; Chughtai, B. Enterococcal Urinary Tract Infections: A Review of the Pathogenicity, Epidemiology, and Treatment. Antibiotics 2023, 12, 778. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Benigna, I.; Sorlini, S.; Torretta, V. Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants. Sustainability 2018, 10, 86. [Google Scholar] [CrossRef]
- Xue, B.; Guo, X.; Cao, J.; Yang, S.; Qiu, Z.; Wang, J.; Shen, Z. The occurrence, ecological risk, and control of disinfection by-products from intensified wastewater disinfection during the COVID-19 pandemic. Sci. Total Environ. 2023, 900, 165602. [Google Scholar] [CrossRef]
- Fiorentino, A.; Lofrano, G.; Cucciniello, R.; Carotenuto, M.; Motta, O.; Proto, A.; Rizzo, L. Disinfection of roof harvested rainwater inoculated with E. coli and Enterococcus and post-treatment bacterial regrowth: Conventional vs solar driven advanced oxidation processes. Sci. Total Environ. 2021, 801, 149763. [Google Scholar] [CrossRef]
- Aguilar-Ascón, E.; Solari-Godiño, A.; Cueva-Martínez, M.; Neyra-Ascón, W.; Albrecht-Ruíz, M. Characterization of Sludge Resulting from Chemical Coagulation and Electrocoagulation of Pumping Water from Fishmeal Factories. Processes 2023, 11, 567. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Surkatti, R.; Ba-Abbad, M.M.; El-Naas, M.H. Optimization of the Biotreatment of GTL Process Water Using Pseudomonas aeruginosa Immobilized in PVA Hydrogel. Processes 2022, 10, 2568. [Google Scholar] [CrossRef]
- Mishra, S.; Sundaram, B. A review of the photocatalysis process used for wastewater treatment. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Sarker, T.; Tahmid, I.; Sarker, R.K.; Dey, S.C.; Islam, M.T.; Sarker, M. ZIF-67-based materials as adsorbent for liquid phase adsorption-a review. Polyhedron 2024, 260, 117069. [Google Scholar] [CrossRef]
- Araújo, E.S.; Pereira, M.F.; da Silva, G.M.; Tavares, G.F.; Oliveira, C.Y.; Faia, P.M. A Review on the Use of Metal Oxide-Based Nanocomposites for the Remediation of Organics-Contaminated Water via Photocatalysis: Fundamentals, Bibliometric Study and Recent Advances. Toxics 2023, 11, 658. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, S.P.; Yuvakkumar, R.; Kumar, P.S.; Ravi, G.; Velauthapillai, D. Rare earth metal (Sm) doped zinc ferrite (ZnFe(2)O(4)) for improved photocatalytic elimination of toxic dye from aquatic system. Environ. Res. 2021, 197, 111047. [Google Scholar] [CrossRef] [PubMed]
- Vaiano, V.; Matarangolo, M.; Murcia, J.; Rojas, H.; Navío, J.A.; Hidalgo, M. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl. Catal. B Environ. 2018, 225, 197–206. [Google Scholar] [CrossRef]
- Kaviyarasu, K.; Matinise, N.; Mayedwa, N.; Mongwaketsi, N.; Letsholathebe, D.; Mola, G.; AbdullahAl-Dhabi, N.; Valan Arasu, M.; Henini, M.; Kennedy, J. Evaluation on La2O3 garlanded ceria heterostructured binary metal oxide nanoplates for UV/visible light induced removal of organic dye from urban wastewater. S. Afr. J. Chem. Eng. 2018, 26, 49–60. [Google Scholar]
- Kajjumba, G.W.; Marti, E.J. A review of the application of cerium and lanthanum in phosphorus removal during wastewater treatment: Characteristics, mechanism, and recovery. Chemosphere 2022, 309, 136462. [Google Scholar] [CrossRef]
- Chan, S.H.S.; Yeong Wu, T.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Wang, X.; Wang, L.; Ning, P.; Tao, L.; Cai, J. Removal of elemental mercury by photocatalytic oxidation over La2O3/Bi2O3 composite. J. Environ. Sci. 2021, 102, 384–397. [Google Scholar] [CrossRef]
- Zhang, C.; Ahmad, I.; Ahmed, S.B.; Ali, M.D.; Karim, M.R.; Bayahia, H.; Khasawneh, M.A. A review of rare earth oxides-based photocatalysts: Design strategies and mechanisms. J. Water Process Eng. 2024, 63, 105548. [Google Scholar] [CrossRef]
- Deshmukh, S.M.; Tamboli, M.S.; Shaikh, H.; Babar, S.B.; Hiwarale, D.P.; Thate, A.G.; Shaikh, A.F.; Alam, M.A.; Khetre, S.M.; Bamane, S.R. A Facile Urea-Assisted Thermal Decomposition Process of TiO2 Nanoparticles and Their Photocatalytic Activity. Coatings 2021, 11, 165. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Al-Hazza, A.; Al-Hajji, L.A.; Ali, N.; Al-Duweesh, A.A.; Banyan, M.; Al-Ajmi, F. Mechanical Milling: A Superior Nanotechnological Tool for Fabrication of Nanocrystalline and Nanocomposite Materials. Nanomaterials 2021, 11, 2484. [Google Scholar] [CrossRef] [PubMed]
- Saviano, L.; Brouziotis, A.A.; Suarez, E.G.P.; Siciliano, A.; Spampinato, M.; Guida, M.; Trifuoggi, M.; Del Bianco, D.; Carotenuto, M.; Spica, V.R.; et al. Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review. Molecules 2023, 28, 6185. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh-Tabrizi, S.; Taheri-Nassaj, E. Economical synthesis of Al2O3 nanopowder using a precipitation method. Mater. Lett. 2009, 63, 2274–2276. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, K.; Srivastava, S.; Chowdhury, A. Effect of rare-earth doping in CeO2 matrix: Correlations with structure, catalytic and visible light photocatalytic properties. Ceram. Int. 2017, 43, 17041–17047. [Google Scholar] [CrossRef]
- Mirshahghassemi, S.; Lead, J.R. Oil recovery from water under environmentally relevant conditions using magnetic nanoparticles. Environ. Sci. Technol. 2015, 49, 11729–11736. [Google Scholar] [CrossRef]
- Kumar, M.; Rahman, A. Innovations in pn type heterostructure composite materials (La2O3/CeO2) for environmental contamination remediation: Synthesis, characterization, and performance assessment. Biomass Convers. Biorefinery 2023, 1–22. [Google Scholar] [CrossRef]
- Kahlmeter, G.; Brown, D.; MacGowan, A.; Goldstein, F.; Mouton, J.; Rodloff, A. EUCAST—The European Committee on Antimicrobial Susceptibility Testing. Clin. Microbiol. Infect. 2003, 9, 422. [Google Scholar]
- Kabir, H.; Nandyala, S.H.; Rahman, M.M.; Kabir, M.A.; Stamboulis, A. Influence of calcination on the sol–gel synthesis of lanthanum oxide nanoparticles. Appl. Phys. A 2018, 124, 820. [Google Scholar] [CrossRef]
- Khalaf, W.M.; Al-Mashhadani, M.H. Synthesis and characterization of lanthanum oxide La2O3 net-like nanoparticles by new combustion method. Biointerface Res. Appl. Chem. 2022, 12, 3066–3075. [Google Scholar]
- Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T. Synthesis of Cerium Oxide (CeO2) nanoparticles using simple CO-precipitation method. Rev. Mex. Física 2016, 62, 496–499. [Google Scholar]
- Jayakumar, G.; Irudayaraj, A.A.; Raj, A.D. Particle size effect on the properties of cerium oxide (CeO2) nanoparticles synthesized by hydrothermal method. Mech. Mater. Sci. Eng. J. 2017, 9, hal-01499374. [Google Scholar]
- Prieur, D.; Bonani, W.; Popa, K.; Walter, O.; Kriegsman, K.W.; Engelhard, M.H.; Guo, X.; Eloirdi, R.; Gouder, T.; Beck, A. Size dependence of lattice parameter and electronic structure in CeO2 nanoparticles. Inorg. Chem. 2020, 59, 5760–5767. [Google Scholar] [CrossRef]
- Madani, R.F.; Sofianty, I.; Sari, A.G.P.; Maryanti, R.; Nandiyanto, A.B.D. Synthesis methods and green synthesis of lanthanum oxide nanoparticles: A review. Arab. J. Chem. Environ. Res. 2021, 8, 287–314. [Google Scholar]
- Mirza, S.H.; Zulfiqar, M.; Azam, S. Effect of hydrostatic pressure on electronic, elastic, and optical properties of hexagonal lanthanum oxide (La2O3): A first principles calculations. Phys. B Condens. Matter 2024, 676, 415686. [Google Scholar] [CrossRef]
- Kumar, M.; Rahman, A. Facile synthesis, characterization, and photocatalytic study of La2O3/SnO2 nanocomposites. J. Inst. Eng. Ser. E 2023, 104, 95–108. [Google Scholar] [CrossRef]
- Wheeler, D.; Khan, I. A Raman spectroscopy study of cerium oxide in a cerium–5 wt.% lanthanum alloy. Vib. Spectrosc. 2014, 70, 200–206. [Google Scholar] [CrossRef]
- Su, Z.; Yang, W.; Wang, C.; Xiong, S.; Cao, X.; Peng, Y.; Si, W.; Weng, Y.; Xue, M.; Li, J. Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion. Environ. Sci. Technol. 2020, 54, 12684–12692. [Google Scholar] [CrossRef] [PubMed]
- Bilel, C.; Jbeli, R.; Ben Jemaa, I.; Dabaki, Y.; Alzaid, M.; Saadallah, F.; Bouaicha, M.; Amlouk, M. Synthesis and physical characterization of Ni-doped La2O3 for photocatytic application under sunlight. J. Mater. Sci. Mater. Electron. 2021, 32, 5415–5426. [Google Scholar] [CrossRef]
- Mustofa, K.; Yulizar, Y.; Saefumillah, A.; Apriandanu, D. La2O3 nanoparticles formation using Nothopanax scutellarium leaf extract in two-phase system and photocatalytic activity under UV light irradiation. IOP Conf. Ser. Mater. Sci. Eng. 2020, 902, 012018. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Song, H.; Ding, B. A simple sol–gel technique for preparing lanthanum oxide nanopowders. Mater. Lett. 2006, 60, 2261–2265. [Google Scholar] [CrossRef]
- Castañeda, C.; Alvarado, I.; Martínez, J.J.; Brijaldo, M.H.; Passos, F.B.; Rojas, H. Enhanced photocatalytic reduction of 4-nitrophenol over Ir/CeO2 photocatalysts under UV irradiation. J. Chem. Technol. Biotechnol. 2019, 94, 2630–2639. [Google Scholar] [CrossRef]
- Culica, M.E.; Chibac-Scutaru, A.L.; Melinte, V.; Coseri, S. Cellulose acetate incorporating organically functionalized CeO2 NPs: Efficient materials for UV filtering applications. Materials 2020, 13, 2955. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.-J.; Niu, C.-G.; Guo, H.; Zhang, L.; Liang, C.; Zeng, G.-M. Photocatalytic degradation of levofloxacin by ternary Ag2CO3/CeO2/AgBr photocatalyst under visible-light irradiation: Degradation pathways, mineralization ability, and an accelerated interfacial charge transfer process study. J. Catal. 2018, 358, 211–223. [Google Scholar] [CrossRef]
- Ren, Z.; Yang, L.; Tang, X.; Xu, Q.; Niu, Y.; Lv, Y.; Liu, M. Visible light-driven characterisation of AgI/CeO2/rGO nanocomposites and their application in levofloxacin degradation. J. Environ. Chem. Eng. 2024, 12, 113124. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, X.; Liu, S.; Ren, Z.; Xing, Y.; Jin, X.; Ni, G. Fabrication of a Z-scheme CeO2/Bi2O4 heterojunction photocatalyst with superior visible-light responsive photocatalytic performance. J. Alloys Compd. 2022, 909, 164671. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H.; Ammar, S.H.; Al-Jubouri, S.M.; Abbar, A.H.; M-Ridha, M.J.; Taher, A.G. Rational design of novel 0D/0D Bi2Sn2O7/CeO2 in the core-shell nanostructure for boosting the photocatalytic decomposition of antibiotics in wastewater: S-type-based mechanism. Mater. Sci. Semicond. Process. 2024, 173, 108165. [Google Scholar] [CrossRef]
Sample | D, nm | Lattice Parameters, A° | SBET, m2 g−1 | Egd, eV | Egi, eV | |
---|---|---|---|---|---|---|
a = b | c | |||||
La2O3 | 22 ± 5 | 4.04 ± 0.05 | 6.17 ± 0.04 | 12 | 5.46 | 5.32 |
CeO2 | 28 ± 5 | 5.51 ± 0.05 | − | 2.4 | 2.81 | 2.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saviano, L.; Mancuso, A.; Cardito, A.; Sacco, O.; Vaiano, V.; Carotenuto, M.; Libralato, G.; Lofrano, G. Photocatalytic Degradation of Levofloxacin and Inactivation of Enterococci Levofloxacin-Resistant Bacteria Using Pure Rare-Earth Oxides. Separations 2024, 11, 272. https://doi.org/10.3390/separations11090272
Saviano L, Mancuso A, Cardito A, Sacco O, Vaiano V, Carotenuto M, Libralato G, Lofrano G. Photocatalytic Degradation of Levofloxacin and Inactivation of Enterococci Levofloxacin-Resistant Bacteria Using Pure Rare-Earth Oxides. Separations. 2024; 11(9):272. https://doi.org/10.3390/separations11090272
Chicago/Turabian StyleSaviano, Lorenzo, Antonietta Mancuso, Alice Cardito, Olga Sacco, Vincenzo Vaiano, Maurizio Carotenuto, Giovanni Libralato, and Giusy Lofrano. 2024. "Photocatalytic Degradation of Levofloxacin and Inactivation of Enterococci Levofloxacin-Resistant Bacteria Using Pure Rare-Earth Oxides" Separations 11, no. 9: 272. https://doi.org/10.3390/separations11090272
APA StyleSaviano, L., Mancuso, A., Cardito, A., Sacco, O., Vaiano, V., Carotenuto, M., Libralato, G., & Lofrano, G. (2024). Photocatalytic Degradation of Levofloxacin and Inactivation of Enterococci Levofloxacin-Resistant Bacteria Using Pure Rare-Earth Oxides. Separations, 11(9), 272. https://doi.org/10.3390/separations11090272