LC-MS Phytochemical Screening, In Vitro Antioxidant, Antimicrobial and Anticancer Activity of Microalgae Nannochloropsis oculata Extract
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Material and Extraction
2.2. Total Phenolics Content (TPC)
2.3. Total Flavonoid Content (TFC)
2.4. Tannins Content (TC)
2.5. In Vitro Antioxidant Activity
2.6. Phytochemical Screening of AME Extract by Using LC-MS
2.7. In Vitro Cytotoxicity Assay
2.7.1. Cell Line and Cell Culture
2.7.2. Treatment of AME Extract to MDA-MB-231
2.7.3. Measurement of Cell Viability
2.8. Antimicrobial Activity
2.9. Statistical Analysis
3. Results
3.1. Estimation of TPC, TFC, and TC
3.2. In Vitro Antioxidant Activity
3.3. Phytochemical Profiling of AME Extract by LC-MS
3.4. Anticancer Activity
3.5. Antimicrobial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Khor, T.O.; Shu, L.; Su, Z.-Y.; Fuentes, F.; Lee, J.-H.; Kong, A.-N.T. Plants vs. Cancer: A Review on Natural Phytochemicals in Preventing and Treating Cancers and Their Druggability. Anti-Cancer Agents Med. Chem. 2012, 12, 1281–1305. [Google Scholar] [CrossRef] [PubMed]
- Thomford, N.; Senthebane, D.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montaser, R.; Luesch, H. Marine Natural Products: A New Wave of Drugs? Future Med. Chem. 2011, 3, 1475–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omar, W.M. Perspectives on the Use of Algae as Biological Indicators for Monitoring and Protecting Aquatic Environments, with Special Reference to Malaysian Freshwater Ecosystems. Trop. Life Sci. Res. 2010, 21, 51–67. [Google Scholar] [PubMed]
- Barkia, I.; Saari, N.; Manning, S.R. Microalgae for High-Value Products towards Human Health and Nutrition. Mar. Drugs 2019, 17, 304. [Google Scholar] [CrossRef] [Green Version]
- Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. Nutritional Evaluation of Australian Microalgae as Potential Human Health Supplements. PLoS ONE 2015, 10, e0118985. [Google Scholar] [CrossRef]
- Petersen, L.-E.; Kellermann, M.Y.; Schupp, P.J. Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology. In YOUMARES 9—The Oceans: Our Research, Our Future; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1, pp. 159–180. [Google Scholar]
- Nethravathy, M.U.; Jitendra, G.M.; Sandeep, N.M.; Ajam, Y.S. Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1882–1897. [Google Scholar]
- Barbosa-Filho, J.M.; Alencar, A.A.; Nunes, X.P.; Tomaz, A.C.D.A.; Sena-Filho, J.G.; Athayde-Filho, P.F.; Silva, M.S.; Souza, M.F.V.D.; Da-Cunha, E.V.L. Sources of Alpha-, Beta-, Gamma-, Delta- and Epsilon-Carotenes: A Twentieth Century Review. Rev. Bras. Farmacogn. 2008, 18, 135–154. [Google Scholar] [CrossRef] [Green Version]
- Matta, C.B.B.D.; Souza, É.T.D.; Queiroz, A.C.D.; Lira, D.P.D.; Araújo, M.V.D.; Cavalcante-Silva, L.H.A.; Miranda, G.E.C.D.; Araújo-Júnior, J.X.D.; Barbosa-Filho, J.M.; Santos, B.V.D.O.; et al. Antinociceptive and Anti-Inflammatory Activity from Algae of the Genus Caulerpa. Mar. Drugs 2011, 9, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds. Front. Pharmacol. 2018, 9, 777. [Google Scholar] [CrossRef] [Green Version]
- Azamjah, N.; Soltan-Zadeh, Y.; Zayeri, F. Global Trend of Breast Cancer Mortality Rate: A 25-Year Study. Asian Pac. J. Cancer Prev. 2019, 20, 2015–2020. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, J.; Haddad, F.G.; Eid, R.; Lambertini, M.; Kourie, H.R. Triple-Negative Breast Cancer: Current Perspective on the Evolving Therapeutic Landscape. Int. J. Women’s Health 2019, 11, 431–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varghese, E.; Samuel, S.; Abotaleb, M.; Cheema, S.; Mamtani, R.; Büsselberg, D. The “Yin and Yang” of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers. Cancers 2018, 10, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calcabrini, C.; Catanzaro, E.; Bishayee, A.; Turrini, E.; Fimognari, C. Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar. Drugs 2017, 15, 310. [Google Scholar] [CrossRef] [Green Version]
- Wali, A.F.; Majid, S.; Rasool, S.; Shehada, S.B.; Abdulkareem, S.K.; Firdous, A.; Beigh, S.; Shakeel, S.; Mushtaq, S.; Akbar, I.; et al. Natural Products against Cancer: Review on Phytochemicals from Marine Sources in Preventing Cancer. Saudi Pharm. J. 2019, 27, 767–777. [Google Scholar] [CrossRef]
- Ratovitski, E. Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression. Curr. Genom. 2017, 18, 175–205. [Google Scholar] [CrossRef]
- Andrade, K.M.; Lauritano, C.; Romano, G.; Ianora, A. Marine Microalgae with Anti-Cancer Properties. Mar. Drugs 2018, 16, 165. [Google Scholar] [CrossRef] [Green Version]
- Borowitzka, M.A. Biology of Microalgae. In Microalgae in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2018; pp. 23–72. [Google Scholar]
- Matos, J.; Cardoso, C.; Bandarra, N.M.; Afonso, C. Microalgae as Healthy Ingredients for Functional Food: A Review. Food Funct. 2017, 8, 2672–2685. [Google Scholar] [CrossRef]
- Sharifah, E.N.; Eguchi, M. The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum. PLoS ONE 2011, 6, e26756. [Google Scholar] [CrossRef] [Green Version]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Du, W.; Wang, Y.; Teng, X.; Chen, X.; Ye, L. Total Phenolic, Flavonoid Content, and Antioxidant Activity of Bulbs, Leaves, and Flowers Made from Eleutherine Bulbosa (Mill.) Urb. Food Sci. Nutr. 2018, 7, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddhuraju, P.; Manian, S. The Antioxidant Activity and Free Radical-Scavenging Capacity of Dietary Phenolic Extracts from Horse Gram (Macrotyloma Uniflorum (Lam.) Verdc.) Seeds. Food Chem. 2007, 105, 950–958. [Google Scholar] [CrossRef]
- Akbar, M.; Mubashir, H.M.; Adil, F.W.; Mudasir, A.M.; Nida, S.S. Antioxidant potential of methanolic root extract of Mentha arvensis L. From Kashmir region. J. Appl. Pharm. 2014, 4, 50–57. [Google Scholar]
- Ramakrishna, J.; Wali, A.F.; Bakhit, F.E.M.; Elawad, A.O.; Ayaabdin, A. In Vitro Antioxidant Activity and Quantitative Elemental Analysis of Adansonia Digitata L. Fruit Using Inductively Coupled Plasma Optical Emission Spectroscopy. Ann. Phytomed. 2019, 8, 127–133. [Google Scholar] [CrossRef]
- Lee, K.J.; Oh, Y.C.; Cho, W.K.; Ma, J.Y. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. Evid.-Based Complement. Altern. Med. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
- National Committee for Clinical Laboratory Standards (NCCLS). Introduces New Editions of Antimicrobial Susceptibility Testing Standards. Clin. Microbiol. Newsl. 1997, 19, 40. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Yan, S.; Asmah, R. Comparison of Total Phenolic Contents and Antioxidant Activities of Turmeric Leaf, Pandan Leaf and Torch Ginger Flower. Int. Food Res. J. 2010, 17, 417–423. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Farasat, M.; Khavari-Nejad, R.-A.; Nabavi, S.M.B.; Namjooyan, F. Antioxidant Properties of Two Edible Green Seaweeds from Northern Coasts of the Persian Gulf. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Haoujar, I.; Cacciola, F.; Abrini, J.; Mangraviti, D.; Giuffrida, D.; Majdoub, Y.O.E.; Kounnoun, A.; Miceli, N.; Taviano, M.F.; Mondello, L.; et al. The Contribution of Carotenoids, Phenolic Compounds, and Flavonoids to the Antioxidative Properties of Marine Microalgae Isolated from Mediterranean Morocco. Molecules 2019, 24, 4037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maadane, A.; Merghoub, N.; Ainane, T.; Arroussi, H.E.; Benhima, R.; Amzazi, S.; Bakri, Y.; Wahby, I. Antioxidant Activity of Some Moroccan Marine Microalgae: Pufa Profiles, Carotenoids and Phenolic Content. J. Biotechnol. 2015, 215, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, M.A.; Khalili, M.; Dehpour, A.A. Antioxidant Activity of Ethyl Acetate and Methanolic Extracts of Two Marine Algae, Nannochloropsis Oculata and Gracilaria Gracilis-An in Vitro Assay. Braz. J. Pharm. 2018, 54, e17280. [Google Scholar] [CrossRef] [Green Version]
- Horincar, V.B.; Parfene, P.; Bahrim, G. Evaluation of Bioactive Compounds in Extracts Obtained from Three Romanian Marine Algae Species. Rom. Biotechnol. Lett. 2011, 16, 71–78. [Google Scholar]
- Zakaria, N.A.; Ibrahim, D.; Sulaiman, S.F.; Supardy, A. Assessment of Antioxidant Activity, Total Phenolic Content and In vitro Toxicity of Malaysian Red Seaweed, Acanthophora Spicifera. J. Chem. Pharm. 2011, 3, 182–191. [Google Scholar]
- Li, X. 2-Phenyl-4,4,5,5-Tetramethylimidazoline-1-Oxyl 3-Oxide (PTIO•) Radical Scavenging: A New and Simple Antioxidant Assay in Vitro. J. Agric. Food Chem. 2017, 65, 6288–6297. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.C.; Zeng, H.P. Synthesis, Antioxidation Activity of (E)-9-p-Tolyl-3-[2-(8-hydroxy-quinol-2-yl) vinyl]-carbazole and (E)-9-(p-Anisyl)-3-[2-(8-hydroxy-quinol-2-yl) vinyl]-carbazole and Their Induction Proliferation of Mesenchymal Stem Cells. Acta Chim. Sin. 2009, 67, 974–982. [Google Scholar]
- Gülçin, I.; Küfrevioǧlu, Ö.; Oktay, M.; Büyükokuroǧlu, M.E. Antioxidant, Antimicrobial, Antiulcer and Analgesic Activities of Nettle (Urtica Dioica L). J. Ethnopharmacol. 2004, 90, 205–215. [Google Scholar] [CrossRef]
- Millao, S.; Uquiche, E. Antioxidant Activity of Supercritical Extracts from Nannochloropsis Gaditana: Correlation with Its Content of Carotenoids and Tocopherols. Supercrit. Fluids 2016, 111, 143–150. [Google Scholar] [CrossRef]
- Custódio, L.; Soares, F.; Pereira, H.; Rodrigues, M.J.; Barreira, L.; Rauter, A.P.; Alberício, F.; Varela, J. Botryococcus Braunii and Nannochloropsis Oculata Extracts Inhibit Cholinesterases and Protect Human Dopaminergic SH-SY5Y Cells from H2O2-Induced Cytotoxicity. J. Appl. Phycol. 2014, 27, 839–848. [Google Scholar] [CrossRef]
- Kumar, S.S.; Saramma, A.V. In Vitro Antioxidant Activity and Total Phenolic Content of Nannochloropsis salina. Int. J. Pharmacogn. 2018, 10, 160–164. [Google Scholar]
- Kokou, F.; Makridis, P.; Kentouri, M.; Divanach, P. Antibacterial Activity in Microalgae Cultures. Aquac. Res. 2011, 43, 1520–1527. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [Green Version]
- Karimi, E.; Jaafar, H.Z.; Ghasemzadeh, A.; Ebrahimi, M. Fatty Acid Composition, Antioxidant and Antibacterial Properties of the Microwave Aqueous Extract of Three Varieties of Labisia Pumila Benth. Biol. Res. 2015, 48, 9. [Google Scholar] [CrossRef] [Green Version]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Zanella, L.; Vianello, F. Microalgae of the Genus Nannochloropsis: Chemical Composition and Functional Implications for Human Nutrition. J. Funct. Foods 2020, 68, 103919. [Google Scholar] [CrossRef]
- Fouad, Y.A.; Aanei, C. Revisiting the Hallmarks of Cancer. Am. J. Cancer Res. 2017, 7, 1016–1036. [Google Scholar]
- Dyshlovoy, S.; Honecker, F. Marine Compounds and Cancer: Where Do We Stand? Mar. Drugs 2015, 13, 5657–5665. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Fernando, I.P.S.; Samarakoon, K.W.; Lakmal, H.H.C.; Kim, E.; Kwon, O.N.; Dilshara, M.G.; Lee, J.; Jeon, Y. Anti-inflammatory and anti-cancer activities of sterol rich fraction of cultured marine microalga Nannochloropsis oculata. Algae 2016, 31, 277–287. [Google Scholar] [CrossRef] [Green Version]
Extract | Total Phenolics μg QE/g | R2 | Total Flavonoid mg GAE/g | R2 | Tannins mg GAE/g | R2 |
---|---|---|---|---|---|---|
AME | 437 ± 0.95 | 0.964 | 53.92 ± 0.83 | 0.989 | 47.05 ± 0.43 | 0.955 |
DPPH IC50 µg/mL | H2O2 IC50 µg/mL | GAE/g ABTS IC50 µg/mL | |
---|---|---|---|
AME | 52.10 ± 0.85 | 122.84 ± 2.32 | 96.95 ± 1.68 |
BHA | 35.91 ± 0.38 | 64.37 ± 1.76 | 45.27 ± 1.53 |
Peak No. | Compound Name | Retention Time (min) | Molecular Formula (gmol−1) | Theoretical (m/z) | Measured (m/z) | Percentage Content |
---|---|---|---|---|---|---|
1. | Stigmasterol | 11.49 | C29H48O | 412.69 | 413.35 | 2.76 |
2. | Unidentified | 10.50 | - | - | 609.39 | - |
3. | Lanosterol | 9.43 | C30H50O | 425.30 | 426.71 | 3.98 |
4. | Morin | 8.85 | C15H10O7 | 301.29 | 302.23 | 1.84 |
5. | Cholesta-3,5-dien-7-one | 8.27 | C27H42O | 382.62 | 383.23 | 2.42 |
6. | Unidentified | 6.75 | - | - | 290.33 | - |
7. | Beta-carotene 5,6-epoxide | 3.41 | C40H56O | 552.90 | 454.34 | 8.76 |
8. | Unidentified | 3.07 | - | - | 249.21 | - |
Pathogens Strains | ZoI | MIC | MBC/MFC µg/mL |
---|---|---|---|
Staphylococcus aureus | 10 ± 1.23 | 15.62 | 31.25 |
Escherichia coli | 7 ± 1.58 | 125 | 250 |
Pseudomonas aeruginosa | 9 ± 1.96 | 62.50 | 125 |
Candida albicans | 5 ± 0.82 | 500 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wali, A.F.; Al Dhaheri, Y.; Ramakrishna Pillai, J.; Mushtaq, A.; Rao, P.G.M.; Rabbani, S.A.; Firdous, A.; Elshikh, M.S.; Farraj, D.A.A. LC-MS Phytochemical Screening, In Vitro Antioxidant, Antimicrobial and Anticancer Activity of Microalgae Nannochloropsis oculata Extract. Separations 2020, 7, 54. https://doi.org/10.3390/separations7040054
Wali AF, Al Dhaheri Y, Ramakrishna Pillai J, Mushtaq A, Rao PGM, Rabbani SA, Firdous A, Elshikh MS, Farraj DAA. LC-MS Phytochemical Screening, In Vitro Antioxidant, Antimicrobial and Anticancer Activity of Microalgae Nannochloropsis oculata Extract. Separations. 2020; 7(4):54. https://doi.org/10.3390/separations7040054
Chicago/Turabian StyleWali, Adil Farooq, Yusra Al Dhaheri, Jayachithra Ramakrishna Pillai, Ahlam Mushtaq, Padma G. M. Rao, Syed Arman Rabbani, Aimen Firdous, Mohamed Soliman Elshikh, and Dunia A. Al Farraj. 2020. "LC-MS Phytochemical Screening, In Vitro Antioxidant, Antimicrobial and Anticancer Activity of Microalgae Nannochloropsis oculata Extract" Separations 7, no. 4: 54. https://doi.org/10.3390/separations7040054
APA StyleWali, A. F., Al Dhaheri, Y., Ramakrishna Pillai, J., Mushtaq, A., Rao, P. G. M., Rabbani, S. A., Firdous, A., Elshikh, M. S., & Farraj, D. A. A. (2020). LC-MS Phytochemical Screening, In Vitro Antioxidant, Antimicrobial and Anticancer Activity of Microalgae Nannochloropsis oculata Extract. Separations, 7(4), 54. https://doi.org/10.3390/separations7040054