Recent Advances in Microfluidics-Based Chromatography—A Mini Review
Abstract
:1. Introduction
2. Affinity-Based Separation
2.1. Metal Oxide and Metal Complex
2.2. Antibody
2.3. Aptamer
3. Adsorption-Based Separation
4. Size Exclusion and Hydrodynamic-Based Separation
5. Ion-Based Separation
6. Other Separation Mechanisms
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nowak, P.M.; Woźniakiewicz, M.; Gładysz, M.; Janus, M.; Kościelniak, P. Improving repeatability of capillary electrophoresis—A critical comparison of ten different capillary inner surfaces and three criteria of peak identification. Anal. Bioanal. Chem. 2017, 409, 4383–4393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaeper, J.P.; Sepaniak, M.J. Parameters affecting reproducibility in capillary electrophoresis. Electrophoresis 2000, 21, 1421–1429. [Google Scholar] [CrossRef]
- Yeh, P.Y.; Rossi, N.A.A.; Kizhakkedathu, J.N.; Chiao, M. A silicone-based microfluidic chip grafted with carboxyl functionalized hyperbranched polyglycerols for selective protein capture. Microfluid. Nanofluid 2010, 9, 199–209. [Google Scholar] [CrossRef]
- Benítez, J.J.; Topolancik, J.; Tian, H.C.; Wallin, C.B.; Latulippe, D.R.; Szeto, K.; Murphy, P.J.; Cipriany, B.R.; Levy, S.L.; Soloway, P.D.; et al. Microfluidic extraction, stretching and analysis of human chromosomal DNA from single cells. Lab Chip 2012, 12, 4848–4854. [Google Scholar] [CrossRef] [PubMed]
- Sarma, M.; Lee, J.; Ma, S.; Li, S.; Lu, C. A diffusion-based microfluidic device for single-cell RNA-seq. Lab Chip 2019, 19, 1247–1256. [Google Scholar] [CrossRef]
- Feng, D.; Xu, T.; Li, H.; Shi, X.; Xu, G. Single-cell Metabolomics Analysis by Microfluidics and Mass Spectrometry: Recent New Advances. J. Anal. Test. 2020, 4, 198–209. [Google Scholar] [CrossRef]
- Mats, L.; Gibson, G.T.T.; Oleschuk, R.D. Plastic LC/MS microchip with an embedded microstructured fibre having the dual role of a frit and a nanoelectrospray emitter. Microfluid. Nanofluid 2014, 16, 73–81. [Google Scholar] [CrossRef]
- Wang, X.; Yi, L.; Mukhitov, N.; Schrell, A.M.; Dhumpa, R.; Roper, M.G. Microfluidics-to-mass spectrometry: A review of coupling methods and applications. J. Chromatogr. A 2015, 1382, 98–116. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.W.; Chang, C.H.; Lin, C.H. High-throughput Fluorescence Detections in Microfluidic Systems. Genom. Med. Biomark. Health Sci. 2011, 3, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Pumera, M. Contactless conductivity detection for microfluidics: Designs and applications. Talanta 2007, 74, 358–364. [Google Scholar] [CrossRef]
- Furlan, C.; Dirks, R.A.M.; Thomas, P.C.; Jones, R.C.; Wang, J.; Lynch, M.; Marks, H.; Vermeulen, M. Miniaturised interaction proteomics on a microfluidic platform with ultra-low input requirements. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osiri, J.K.; Shadpour, H.; Witek, M.A.; Steven, S.A. Integrated Multifunctional Microfluidics for Automated Proteome Analyses. Top. Curr. Chem. 2011, 304, 261–294. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.H.; Ma, Y.D.; Fu, C.Y.; Lee, G. Bin A structure-free digital microfluidic platform for detection of influenza a virus by using magnetic beads and electromagnetic forces. Lab Chip 2020, 20, 789–797. [Google Scholar] [CrossRef]
- Xue, P.; Ye, K.; Gao, J.; Wu, Y.; Guo, J.; Hui, K.M.; Kang, Y. Isolation and elution of Hep3B circulating tumor cells using a dual-functional herringbone chip. Microfluid. Nanofluid 2014, 16, 605–612. [Google Scholar] [CrossRef]
- Contreras-Naranjo, J.C.; Wu, H.J.; Ugaz, V.M. Microfluidics for exosome isolation and analysis: Enabling liquid biopsy for personalized medicine. Lab Chip 2017, 17, 3558–3577. [Google Scholar] [CrossRef]
- Wali, A.F.; Al Dhaheri, Y.; Pillai, J.R.; Mushtaq, A.; Rao, P.G.M.; Rabbani, S.A.; Firdous, A.; Elshikh, M.S.; Al Farraj, D.A. Lc-ms phytochemical screening, in vitro antioxidant, antimicrobial and anticancer activity of microalgae nannochloropsis oculata extract. Separations 2020, 7, 54. [Google Scholar] [CrossRef]
- Song, N.E.; Jung, Y.S.; Choi, J.Y.; Koo, M.; Choi, H.K.; Seo, D.H.; Lim, T.G.; Nam, T.G. Development and application of a multi-residue method to determine pesticides in agricultural water using quechers extraction and lc-ms/ms analysis. Separations 2020, 7, 52. [Google Scholar] [CrossRef]
- Oliva, A.; Llabrés, M. Validation of a size-exclusion chromatography method for bevacizumab quantitation in pharmaceutical preparations: Application in a biosimilar study. Separations 2019, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Harsha, H.C.; Pandey, A. Phosphoproteomics in cancer. Mol. Oncol. 2010, 4, 482–495. [Google Scholar] [CrossRef]
- Tsougeni, K.; Zerefos, P.; Tserepi, A.; Vlahou, A.; Garbis, S.D.; Gogolides, E. TiO2-ZrO2 affinity chromatography polymeric microchip for phosphopeptide enrichment and separation. Lab Chip 2011, 11, 3113–3120. [Google Scholar] [CrossRef]
- Min, Q.; Chen, X.; Zhang, X.; Zhu, J.J. Tailoring of a TiO2 nanotube array-integrated portable microdevice for efficient on-chip enrichment and isotope labeling of serum phosphopeptides. Lab Chip 2013, 13, 3853–3861. [Google Scholar] [CrossRef]
- Zhao, D.; He, Z.; Wang, G.; Wang, H.; Zhang, Q.; Li, Y. Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment. J. Colloid Interface Sci. 2016, 478, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-J.; Jeong, K.J.; Hashimoto, M.; Kwon, A.H.; Rwei, A.; Shankarappa, S.A.; Tsui, J.H.; Kohane, D.S. Synthetic Ligand-Coated Magnetic Nanoparticles for Micro fl uidic Bacterial Separation from Blood. Nano Lett. 2013, 14, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Killion, J.J.; Kollmorgen, G.M. Isolation of immunogenic tumour cells by cell-affinity chromatography. Nature 1976, 259, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Murlidhar, V.; Zeinali, M.; Grabauskiene, S.; Ghannad-Rezaie, M.; Wicha, M.S.; Simeone, D.M.; Ramnath, N.; Reddy, R.M.; Nagrath, S. A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. Small 2014, 10, 4895–4904. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Gao, Y.; Pappas, D. Multiparameter Cell A ffi nity Chromatography: Separation and Analysis in a Single Micro fl uidic Channel. Anal. Chem. 2012, 84, 8140–8148. [Google Scholar] [CrossRef] [Green Version]
- Pullagurla, S.R.; Witek, A.; Jackson, J.M.; Lindell, M.A.M.; Hupert, M.L.; Nesterova, I.V.; Baird, A.E.; Soper, S.A. Parallel A ffi nity-Based Isolation of Leukocyte Subsets Using Micro fl uidics: Application for Stroke Diagnosis. Anal. Chem. 2014, 86, 4058–4065. [Google Scholar] [CrossRef]
- Chen, C.; Skog, J.; Hsu, C.-H.; Lessard, R.T.; Balaj, L.; Wurdonger, T.; Carter, B.S.; Breakerfiled, X.O.; Toner, M.; Irimia, D. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 2010, 10, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Yang, Y.; Zeng, Y.; He, M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 2016, 16, 489–496. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Crow, J.; Roth, M.; Zeng, Y.; Godwin, A.K. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 2014, 14, 3773–3780. [Google Scholar] [CrossRef] [Green Version]
- Reinholt, S.J.; Craighead, H.G. Microfluidic Device for Aptamer-Based Cancer Cell Capture and Genetic Mutation Detection. Anal. Chem. 2018, 90, 2601–2608. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhu, L.; Huang, M.; Song, J.; Zhang, H.; Song, Y.; Wang, W.; Yang, C. Aptamer-based microfluidics for isolation, release and analysis of circulating tumor cells. TrAC Trends Anal. Chem. 2019, 117, 69–77. [Google Scholar] [CrossRef]
- Wang, L.; Musile, G.; McCord, B.R. An aptamer-based paper microfluidic device for the colorimetric determination of cocaine. Electrophoresis 2018, 39, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Lin, S.L.; Chan, S.A.; Lin, T.Y.; Fuh, M.R. Microfluidic chip-based nano-liquid chromatography tandem mass spectrometry for quantification of aflatoxins in peanut products. Talanta 2013, 113, 76–81. [Google Scholar] [CrossRef]
- De Malsche, W.; Eghbali, H.; Clicq, D.; Vangelooven, J.; Gardeniers, H.; Desmet, G. Pressure-driven reverse-phase liquid chromatography separations in ordered nonporous pillar array columns. Anal. Chem. 2007, 79, 5915–5926. [Google Scholar] [CrossRef]
- Detobel, F.; De Bruyne, S.; Vangelooven, J.; De Malsche, W.; Aerts, T.; Terryn, H.; Gardeniers, H.; Eeltink, S.; Desmet, G. Fabrication and chromatographic performance of porous-shell pillar-array columns. Anal. Chem. 2010, 82, 7208–7217. [Google Scholar] [CrossRef]
- De Malsche, W.; Op De Beeck, J.; De Bruyne, S.; Gardeniers, H.; Desmet, G. Realization of 1 × 106 theoretical plates in liquid chromatography using very long pillar array columns. Anal. Chem. 2012, 84, 1214–1219. [Google Scholar] [CrossRef]
- Taylor, L.C.; Lavrik, N.V.; Sepaniak, M.J. High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography. Anal. Chem. 2010, 82, 9549–9556. [Google Scholar] [CrossRef]
- Lavrik, N.V.; Taylor, L.C.; Sepaniak, M.J. Enclosed pillar arrays integrated on a fluidic platform for on-chip separations and analysis. Lab Chip 2010, 10, 1086–1094. [Google Scholar] [CrossRef]
- Lincoln, D.R.; Lavrik, N.V.; Kravchenko, I.I.; Sepaniak, M.J. Retention in Porous Layer Pillar Array Planar Separation Platforms. Anal. Chem. 2016, 88, 8741–8748. [Google Scholar] [CrossRef]
- Levkin, P.A.; Eeltink, S.; Stratton, T.R.; Brennen, R.; Robotti, K.; Yin, H.; Killeen, K.; Svec, F.; Fréchet, J.M.J. Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides. J. Chromatogr. A 2008, 1200, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Hare, D.O. Monolithic nano-porous polymer in microfluidic channels for lab-chip liquid chromatography. Nano Converg. 2018, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Killeen, K.; Brennen, R.; Sobek, D.; Werlich, M.; Van De Goor, T. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal. Chem. 2005, 77, 527–533. [Google Scholar] [CrossRef] [PubMed]
- De Vos, J.; Dams, M.; Broeckhoven, K.; Desmet, G.; Horstkotte, B.; Eeltink, S. Prototyping of a Microfluidic Modulator Chip and Its Application in Heart-Cut Strong-Cation-Exchange-Reversed-Phase Liquid Chromatography Coupled to Nanoelectrospray Mass Spectrometry for Targeted Proteomics. Anal. Chem. 2020, 92, 2388–2392. [Google Scholar] [CrossRef]
- Striegel, A.M.; Brewer, A.K. Hydrodynamic chromatography. Annu. Rev. Anal. Chem. 2012, 5, 15–34. [Google Scholar] [CrossRef]
- Millet, L.J.; Lucheon, J.D.; Standaert, R.F.; Retterer, S.T.; Doktycz, M.J. Modular microfluidics for point-of-care protein purifications. Lab Chip 2015, 15, 1799–1811. [Google Scholar] [CrossRef]
- Duan, L.; Yobas, L. On-chip hydrodynamic chromatography of DNA through centimeters-long glass nanocapillaries. Analyst 2017, 142, 2191–2198. [Google Scholar] [CrossRef]
- Murrihy, J.P.; Breadmore, M.C.; Tan, A.; McEnery, M.; Alderman, J.; O’Mathuna, C.; O’Neill, A.P.; O’Brien, P.; Advoldvic, N.; Haddad, P.R.; et al. Ion chromatography on-chip. J. Chromatogr. A 2001, 924, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Niimi, M.; Masuda, T.; Kaihatsu, K.; Kato, N.; Arai, F. Virus chromatography; On-chip diagnosis of virus infection from human body fluid. In Proceedings of the 2012 International Symposium on Micro-NanoMechatronics and Human Science, MHS, Nagoya, Japan, 4–7 November 2012; pp. 12–15. [Google Scholar]
- Masuda, T.; Niimi, M.; Kaihatsu, K.; Kato, N.; Arai, F. Purification of Virus Particles by Ceramic Hydroxyapatite Chromatography on Microfluidic Chip. In Proceedings of the 14th IEEE International Conference on Nanotechnology, Toronto, ON, Canada, 18–21 August 2014; pp. 131–134. [Google Scholar]
- Rahbar, M.; Wheeler, A.R.; Paull, B.; Macka, M. Ion-Exchange Based Immobilization of Chromogenic Reagents on Microfluidic Paper Analytical Devices. Anal. Chem. 2019, 91, 8756–8761. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.; Gorey, B.; De Guzman, K.; Kelly, N.; Nesterenko, E.P.; Morrin, A. Microfluidic paper analytical device for the chromatographic separation of ascorbic acid and dopamine. RSC Adv. 2015, 5, 93162–93169. [Google Scholar] [CrossRef]
- Kato, M.; Inaba, M.; Tsukahara, T.; Mawatari, K.; Hibara, A.; Kitamori, T. Femto liquid chromatography with attoliter sample separation in the extended nanospace channel. Anal. Chem. 2010, 82, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, R.; Mawatari, K.; Takahashi, K.; Kitamori, T. Development of a pressure-driven injection system for precisely time controlled attoliter sample injection into extended nanochannels. J. Chromatogr. A 2012, 1228, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, R.; Mawatari, K.; Kitamori, T. Highly efficient and ultra-small volume separation by pressure-driven liquid chromatography in extended nanochannels. Small 2012, 8, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Morikawa, K.; Liu, Y.; Smirnova, A.; Mawatari, K.; Kitamori, T. Femtoliter high-performance liquid chromatography using extended-nano channels. Analyst 2016, 141, 6068–6072. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, A.; Shimizu, H.; Pihosh, Y.; Mawatari, K.; Kitamori, T. On-Chip Step-Mixing in a T-Nanomixer for Liquid Chromatography in Extended-Nanochannels. Anal. Chem. 2016, 88, 10059–10064. [Google Scholar] [CrossRef] [PubMed]
Separation Mechanism | Chip Substrate | Fabrication Method | Stationary Phase | Mobile Phase or Carrier Fluids | Analytes | Ref. |
---|---|---|---|---|---|---|
Affinity | PMMA | Lithographic exposures, plasma processes | TiO2-ZrO2 | Acidic mobile phase: FA 1% (v/v), TFA 0.05% (v/v) Basic mobile phase: NH4OH | Phosphopeptides | [20] |
PDMS, glass | Photolithographic, wet etching, soft lithography, replica molding | TiO2 nanotube array | Loading buffer consisting of 6% (v/v) TFA and 50% (v/v) ACN | Phosphopeptides | [21] | |
PDMS, glass, PMMA | Emulsifier-free emulsion polymerization, evaporation-induced self-assembly, replica molding | TiO2-ZrO2 film | Loading buffer: 50% ACN and 1% TFA | Phosphopeptides | [22] | |
MNPs modified with bis-Zn-DPA | Diluted RBC solution | Escherichia coli | [23] | |||
PDMS, glass | Anti-EpCAM | Healthy blood or serum free medium | Circulating tumor cells | [25] | ||
PDMS, glass | Soft lithography, plasma bonding | Anti-CD4, anti-CD19, etc | Blood | Ramos and HuT 78 cells | [26] | |
PMMA, COC | Hot embossing, micro-replication, thermal fusion bonding | Anti-CD4, anti-CD66b, etc | Blood | Leukocytes | [27] | |
PDMS | Oxygen plasma | Anti-CD63 IgG, anti-CD4 | Serum, blood | Microvesicles | [28] | |
PDMS, glass | Soft lithography | Immunomagnet-ic beads | Plasma | Exosomes | [29] | |
PDMS | Magnetic beads conjugated with antibodies | Plasma | Tumor exosomes | [30] | ||
PDMS, glass | Soft lithography | DNA aptamers | PBS binding buffer, 6 M guanidinium isothiocyanate | Cancer cells | [31] | |
Chromatographic paper | Wax-printing | Anti-cocaine aptamers | 2.8 M MgCl2 and 50 mg/mL sucrose | Cocaine | [33] | |
Adsorption | NanoLC chip | SB-C18, SB-C8 Zorbax 300A | 0.5 g NaCl and 10 mL of 60% MeOH (ag) | Aflatoxin | [34] | |
Adsorption | Silicon, glass | UV photolithography, thermally (dry) oxidized | C8 | Methanol–water mixture | Coumarin | [35] |
Silicon | UV photolithography, sol–gel procedures | C8 | Methanol–water mixture | Coumarin | [36] | |
Silicon | UV photolithography, dry etching, reactive ion etching | Methanol–water mixture | Coumarin | [37] | ||
Silicon, silicon oxides | Photolithography, PECVD | Methanol–phosphate mixture | Sulforhodamine B, fluorescein sodium salt | [38] | ||
Silicon, silicon oxides | Photolithography, PECVD | Pure methanol, methanol–water mixture | Sulforhodamine B, fluorescein sodium salt | [39] | ||
Silicon | UV photolithography, PECVD | C4, C18 | Ethanol–water mixture, AgNO3 | Coumarin, NBD-amines | [40] | |
Polyimide | Laser ablation | LaMA-EDMA and ST-DVB monolith | Acetonitrile in water (both containing 0.05%, v/v, formic acid) | Proteins and peptides | [41] | |
TPE, PET, PDMS | Rapid prototyping process | Poly(methyl acrylate) | DI water | Neurotransmitters | [42] | |
Polyimide | Laser-ablation | Zorbax SB C18 | Water with 0.1% formic acid; 90% acetonitrile and10% water with 0.1% formic acid | Peptides | [43] | |
COC, PEEK | Micromilling, solvent-vapor-assisted bonding | C18 | Peptides | [44] | ||
Size exclusion and hydrodynamic | PDMS | Photolithography | Sephadex G25 beads | Proteins | [46] | |
Glass, Si | Low-resolution photolithography | 1× TE buffer containing 10 mM Tris, and 1 mM EDTA | DNA | [47] | ||
Ion | Silicon wafer, Pyrex plate | Photolithography, wet and dry etching, anodic bonding | Quaternary ammonium latex particles | KCl solution | Nitrite, nitrate, iodide, and thiourea | [48] |
PDMS | Replica molding, photolithography, air plasma | Hydroxyapatite | FBS | Virus | [49] | |
PDMS | Replica molding, photolithography, air plasma | Hydroxyapatite | FBS | Virus particles | [50] | |
Anion exchange filter paper | Wax printing | Arsenazo III, bromothymol blue | Water | Calcium, tartaric acid | [51] | |
Ion | Cation exchange paper | Wax printing | Carboxyl groups on the cellulose paper | AA and DA buffer solutions | Ascorbic acid, dopamine hydrochloride | [52] |
Other separation mechanism | Glass | Electron-beam lithography, plasma etching, thermally laminated | Silanol groups | 0.1 mM phosphate buffer | Fluorescein, sulforhodamine B | [53] |
Glass | Electron-beam lithography, plasma etching, thermally laminated | Bare silica (silanol surface) | Toluene–ethanol mixture | Pyrromethene 597 | [54] | |
Glass | Electron-beam lithography, plasma etching, thermally laminated | Bare silica (silanol surface) | Toluene–ethanol mixture | Pyrromethene 597, coumarin 460 | [55] | |
Fused silica | Electron beam lithography, photolithography, reactive ion etching, thermal fusion bonding | Bare silica surface | Hexane-2–propanol mixture | Pyrromethene 597, coumarin 460 | [56] | |
Quartz glass | Electron-beam lithography, photolithography, plasma etching, low temperature bonding | C18 | 25 mM citrate buffer containing 25 mM sodium perchlorate (pH 5.5)/ acetonitrile (5–40% v/v) | Amino acids | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, B.; Wang, Z.; Thushara, D.; Liyanage, A.; Gunawardena, S.; Yang, Z.; Zhao, S. Recent Advances in Microfluidics-Based Chromatography—A Mini Review. Separations 2021, 8, 3. https://doi.org/10.3390/separations8010003
Bao B, Wang Z, Thushara D, Liyanage A, Gunawardena S, Yang Z, Zhao S. Recent Advances in Microfluidics-Based Chromatography—A Mini Review. Separations. 2021; 8(1):3. https://doi.org/10.3390/separations8010003
Chicago/Turabian StyleBao, Bo, Zhichao Wang, Dilantha Thushara, Achini Liyanage, Sanja Gunawardena, Zaiyong Yang, and Shuangliang Zhao. 2021. "Recent Advances in Microfluidics-Based Chromatography—A Mini Review" Separations 8, no. 1: 3. https://doi.org/10.3390/separations8010003
APA StyleBao, B., Wang, Z., Thushara, D., Liyanage, A., Gunawardena, S., Yang, Z., & Zhao, S. (2021). Recent Advances in Microfluidics-Based Chromatography—A Mini Review. Separations, 8(1), 3. https://doi.org/10.3390/separations8010003