Study on the Stability of Antibiotics, Pesticides and Drugs in Water by Using a Straightforward Procedure Applying HPLC-Mass Spectrometric Determination for Analytical Purposes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. LC-MS Instrumentation
2.3. Data Validation
3. Results
- (i)
- Surface Water + analytes at 100 ng L−1;
- (ii)
- Surface Water + ACN 25% + analytes at 100 ng L−1;
- (iii)
- Milli Q + ACN 25% + analytes at 100 ng L−1.
4. Conclusions
- -
- Several analytes show a matrix effect: In surface water samples, the analyte Clotrimazole, Miconazole, Ipconazole, Famoxadone and Metaflumizone, if not properly treated, are not stable in aqueous solution even within a few hours from sampling or sample preparation;
- -
- All the analytes of the WL are stable in aqueous solutions with the addition of at least 25% ACN even after 168 h from sampling;
- -
- The analysis of Watch List compounds can be carried out through the use of the SPEDEX Horizon 5000 system;
- -
- For all analytes investigated, the percentage recoveries were between 70 and 130% by using SPE procedures followed by a UHPLC-MS/MS analysis, in good agreement with method validation procedures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclosure
References
- Barreca, S.; Busetto, M.; Colzani, L.; Clerici, L.; Daverio, D.; Dellavedova, P.; Ubaldi, V. Determination of estrogenic endocrine disruptors in water at sub-ng L−1 levels in compliance with Decision 2015/495/EU using offline-online solid phase extraction concentration coupled with high performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2019, 147, 1186–1191. [Google Scholar] [CrossRef]
- Barreca, S.; Busetto, M.; Vitelli, M.; Colzani, L.; Clerici, L.; Dellavedova, P. Online solid-phase extraction LC-MS/MS: A rapid and valid method for the determination of perfluorinated compounds at sub ng L−1 Level in natural water. J. Chem. 2018, 2018, 3780825. [Google Scholar] [CrossRef] [Green Version]
- Barreca, S.; Orecchio, S.; Pace, A. Photochemical sample treatment for extracts clean up in PCB analysis from sediments. Talanta 2013, 103, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergamasco, A.; Culotta, L.; De Stefano, C.; Orecchio, S.; Sammartano, S.; Barreca, S. Composition, distribution, and sources of polycyclic aromatic hydrocarbons in sediments of the Gulf of Milazzo (Mediterranean Sea, Italy). Polycycl. Aromat. Compd. 2014, 34, 397–424. [Google Scholar] [CrossRef]
- Barreca, S.; Busetto, M.; Colzani, L.; Clerici, L.; Marchesi, V.; Tremolada, L.; Daverio, D.; Dellavedova, P. Hyphenated high performance liquid chromatography–tandem mass spectrometry techniques for the determination of perfluorinated alkylated substances in Lombardia region in Italy, profile levels and assessment: One year of monitoring activities during 2018. Separations 2020, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/LSU/?uri=CELEX%3A32000L0060 (accessed on 14 February 2017).
- Commission Implementing Decision (EU) 2015/495 of 20 March 2015 Establishing a Watch List of Substances for Unionwide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2015.078.01.0040.01.ENG (accessed on 20 March 2015).
- JRC Conference and Workshop Reports Analytical Methods for Substances in the Watch List under the Water Framework Directive Workshop Report JRC, Ispra, Italy, 1–2 March 2018.
- Implementing Decision 2018/840—Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC Repealing Commission Implementing Decision (EU) 2015/495 (Notified under Document C (2018) 3362). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018D0840 (accessed on 5 June 2018).
- Implementing Decision 2020/1161 of 4 August 2020 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020D1161 (accessed on 4 August 2020).
- Almalki, A.H.; Ali, N.A.; Elroby, F.A.; El Ghobashy, M.R.; Emam, A.A.; Naguib, I.A. ESI–LC–MS/MS for Therapeutic Drug Monitoring of Binary Mixture of Pregabalin and Tramadol: Human Plasma and Urine Applications. Separations 2021, 8, 21. [Google Scholar] [CrossRef]
- Almeida, C.M.M. Overview of Sample Preparation and Chromatographic Methods to Analysis Pharmaceutical Active Compounds in Waters Matrices. Separations 2021, 8, 16. [Google Scholar] [CrossRef]
- CLH REPORT FOR METAFLUMIZONE CLH Report Proposal for Harmonised Classification and Labelling. Available online: https://echa.europa.eu/documents/10162/be360a1e-74d5-5df0-b310-39c0c6e1a364 (accessed on 15 March 2016).
- Pace, A.; Barreca, S. Environmental organic photochemistry: Advances and perspectives. Curr. Org. Chem. 2013, 17, 3032–3041. [Google Scholar] [CrossRef]
- Abreu, S.; Caboni, P.; Cabras, P.; Alves, A.; Garau, V. A comparison of a gas chromatographic with electron-capture detection and a gas chromatographic with mass spectrometric detection screening methods for the analysis of famoxadone in grapes and wines. J. Chromatogr. A 2006, 1103, 367. [Google Scholar]
- Glineur, A.; Nott, K.; Carbonnelle, P.; Ronkart, S.; Purcaro, G. Development and validation of a method for determining estrogenic compounds in surface water at the ultra-trace level required by the EU Water Framework Directive Watch List. J. Chromatogr. A 2020, 1624, 461242. [Google Scholar] [CrossRef] [PubMed]
- Orecchio, S.; Amorello, D.; Barreca, S. Wood pellets for home heating can be considered environmentally friendly fuels? Heavy metals determination by inductively coupled plasma-optical emission spectrometry (ICP-OES) in their ashes and the health risk assessment for the operators. Microchem. J. 2016, 127, 178–183. [Google Scholar] [CrossRef]
- Hänel, H.; Raether, W. A More Sophisticated Method of Determining the Fungicidal Effect of Water-Insoluble Preparations with a Cell Harvester, Using Miconazole as an Example/Eine verbesserte Methode zur Bestimmung der Fungizidie von wasserunlöslichen Präparaten mit Hilfe eines Zellerntegerätes am Beispiel von Miconazol. Mycoses 1988, 31, 148–154. [Google Scholar] [PubMed]
- Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. SANTE/11945/2015 Supersedes SANCO/12571/2013 Implemented by 01/01/2016. Available online: https://www.eurl-pesticides.eu/library/docs/allcrl/AqcGuidance_SANTE_2015_11945.pdf (accessed on 1 January 2016).
- UNI CEI EN ISO/IEC 17025:2018. Available online: http://store.uni.com/catalogo/uni-cei-en-iso-iec-17025-2018?josso_back_to=http://store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com (accessed on 25 January 2018).
Parameters | Unit | Value |
---|---|---|
Curtain Gas (CUR) | psi | 30 |
Collision Gas | - | Medium |
Ion Spray Voltage (IS) | V | 4500 |
Temperature TEM (GS2) | °C | 450 |
Ion Source Gas (GS1) | psi | 55 |
Ion Source Gas (GS2) | psi | 60 |
Analyte | Q1 Precursion Ion [M+H]+ (m/z) | Q3 Product Ion (m/z) | Declustering Potential (DP) | Entrance Potential (EP) | Collision Energy (CE) | Collision Exit Potential (CXP) |
---|---|---|---|---|---|---|
Sulfamethoxazole-1 | 254 | 156 | 46 | 10 | 24 | 10 |
Sulfamethoxazole-2 | 254 | 92 | 46 | 10 | 36 | 9.5 |
Trimethoprim-1 | 291 | 230 | 40 | 10 | 30 | 10 |
Trimethoprim-2 | 291 | 123 | 40 | 10 | 30 | 10 |
Velanfaxine-1 | 278 | 260 | 20 | 10 | 15 | 10 |
Velanfaxine-2 | 278 | 121 | 20 | 10 | 35 | 10 |
O-Desmethylvenlafaxine-1 | 264 | 246 | 40 | 10 | 20 | 10 |
O-Desmethylvenlafaxine-2 | 264 | 107 | 40 | 10 | 60 | 9.5 |
Clotrimazole-1 | 277 | 242 | 20 | 10 | 25 | 9.5 |
Clotrimazole-2 | 277 | 163 | 20 | 10 | 70 | 9.5 |
Fluconazole-1 | 307 | 238 | 40 | 10 | 25 | 9.5 |
Fluconazole-2 | 307 | 220 | 40 | 10 | 22 | 9.5 |
Miconazole-1 | 417 | 161 | 40 | 10 | 25 | 9.5 |
Miconazole-2 | 417 | 159 | 40 | 10 | 25 | 9.5 |
Imazalil-1 | 297 | 159 | 81 | 10 | 25 | 9.5 |
Imazalil-2 | 297 | 201 | 81 | 10 | 25 | 9.5 |
Ipconazole-1 | 334 | 70 | 81 | 10 | 37 | 9.5 |
Ipconazole-2 | 334 | 125 | 101 | 10 | 48 | 9.5 |
Metconazole-1 | 320 | 70 | 100 | 10 | 50 | 5.0 |
Metconazole-2 | 320 | 125 | 90 | 10 | 35 | 5.0 |
Penconazole-1 | 284 | 70 | 81 | 10 | 37 | 8.0 |
Penconazole-2 | 284 | 159 | 81 | 10 | 35 | 15 |
Prochloraz-1 | 376 | 308 | 51 | 10 | 15 | 10.0 |
Prochloraz-2 | 376 | 70 | 51 | 10 | 43 | 5.0 |
Tetraconazole-1 | 372 | 159 | 86 | 10 | 35 | 8.0 |
Tetraconazole-2 | 372 | 70 | 86 | 10 | 48 | 12.0 |
Tebuconazole-1 | 308 | 70 | 86 | 10 | 51 | 8.0 |
Tebuconazole-2 | 308 | 125 | 86 | 10 | 55 | 6.0 |
Dimoxystrobin-1 | 327 | 116 | 66 | 10 | 29 | 6.0 |
Dimoxystrobin-2 | 327 | 205 | 66 | 10 | 23 | 14.0 |
Famoxadone-1 | 392 | 331 | 46 | 10 | 13 | 10.0 |
Famoxadone-2 | 392 | 238 | 46 | 10 | 23 | 15.0 |
Metaflumizone-1 | 507 | 178 | 70 | 10 | 35 | 10 |
Metaflumizone-2 | 507 | 116 | 70 | 10 | 30 | 10.0 |
Ciprofloxacin-1 | 332 | 231 | 50 | 10 | 48 | 10.0 |
Ciprofloxacin-2 | 332 | 314 | 50 | 10 | 31 | 10.0 |
Time (min) | Flow (mL/min) | % Water + Formic Acid 0.05% + Ammonium Formate 5 mM | % Methanol Formic Acid 0.05% + Ammonium Formate 5 mM |
---|---|---|---|
0.0 | 0.35 | 90 | 10 |
0.1 | 0.35 | 90 | 10 |
9.0 | 0.35 | 2 | 98 |
10.0 | 0.35 | 2 | 98 |
10.1 | 0.35 | 90 | 10 |
12.0 | 0.35 | 90 | 10 |
Analyte | LOQ (ng/L) | Accuracy % | Precision RSD% |
---|---|---|---|
Trimetoprim | 50 | 90.0 | 4.9 |
Venlafaxina | 6 | 99.9 | 4.3 |
O-desmetilvenlafaxina | 6 | 115.7 | 5.6 |
Clotrimazolo | 10 | 109.7 | 5.7 |
Fluconazolo | 50 | 97.4 | 5.0 |
Miconazolo | 50 | 80.8 | 5.3 |
Imazalil | 50 | 101.7 | 9.0 |
Ipconazolo | 20 | 95.8 | 9.3 |
Metconazolo | 20 | 95.7 | 11.3 |
Penconazolo | 50 | 120.7 | 7.7 |
Prochloraz | 50 | 105.1 | 8.3 |
Tetraconazolo | 50 | 115.9 | 3.8 |
Tebuconazolo | 50 | 116.1 | 5.8 |
Dimoxystrobin | 20 | 90.1 | 9.7 |
Famoxadone | 8 | 108.9 | 8.9 |
Metaflumizone | 50 | 107.2 | 9.0 |
Ciprofloxacin | 50 | 92.6 | 8.3 |
Sulfamethoxazole | 50 | 93.5 | 9.9 |
Analyte |
Recovery % Surface Water + Analyte at 100 ng L−1 |
Recovery % Surface Water + ACN 25% + Analyte at 100 ng L−1 |
Recovery % Milli Q + ACN 25% + Analyte at 100 ng L−1 |
---|---|---|---|
Sulfamethoxazole | 110 ± 6 | 99 ± 7 | 109 ± 5 |
Trimethoprim | 73 ± 8 | 70 ± 6 | 118 ± 8 |
Velanfaxine | 76 ± 2 | 78 ± 4 | 106 ± 3 |
O-Desmethylvenlafaxine | 73 ± 3 | 75 ± 3 | 109 ± 5 |
Clotrimazole | 39 ± 10 | 71 ± 7 | 106 ± 9 |
Fluconazole | 82 ± 5 | 80 ± 7 | 110 ± 7 |
Miconazole | 14 ± 16 | 110 ± 11 | 124 ± 8 |
Imazalil | 60 ± 9 | 74 ± 3 | 124 ± 5 |
Ipconazole | 49 ± 5 | 88 ± 5 | 110 ± 6 |
Metconazole | 65 ± 9 | 79 ± 12 | 107 ± 11 |
Penconazole | 61 ± 8 | 83 ± 6 | 118 ± 8 |
Prochloraz | 62 ± 11 | 82 ± 7 | 111 ± 5 |
Tetraconazole | 70 ± 8 | 83 ± 9 | 104 ± 7 |
Tebuconazole | 71 ± 5 | 81 ± 7 | 113 ± 9 |
Dimoxystrobin | 79 ± 8 | 84 ± 5 | 106 ± 7 |
Famoxadone | 27 ± 12 | 85 ± 6 | 105 ± 10 |
Metaflumizone | 6 ± 3 | 73 ± 4 | 112 ± 3 |
Dimoxystrobin | 112 ± 4 | 103 ± 7 | 104 ± 8 |
Analyte | Percentage Recoveries in Surface Water filtrated + ACN 25% + Analyte at 100 ng L−1 a Time 24 h | Percentage Recoveries in Surface Water + ACN 25% + Analyte a 100 ng L−1 at Time 24 h | Percentage Recoveries in Surface Water + ACN 25% + Analyte at 100 ng L−1 a Time 24 h and Sonicated by Ultrasound | Percentage Recoveries in Surface Water + Analyte a 100 ng L−1 at Time 24 h |
---|---|---|---|---|
Sulfamethoxazole | 109 ± 18 | 114 ± 13 | 96 ± 15 | 112 ± 6 |
Trimethoprim | 81 ± 15 | 70 ± 10 | 55 ± 16 | 68 ± 4 |
Velanfaxine | 105 ± 3 | 82 ± 11 | 62 ± 7 | 78 ± 1 |
O-Desmethylvenlafaxine | 89 ± 16 | 88 ± 5 | 56 ± 6 | 80 ± 6 |
Clotrimazole | 85 ± 15 | 75 ± 7 | 64 ± 14 | 23 ± 8 |
Fluconazole | 87 ± 17 | 74 ± 9 | 66 ± 11 | 77 ± 10 |
Miconazole | 98 ± 11 | 83 ± 13 | 67 ± 7 | 5 ± 2 |
Imazalil | 91 ± 8 | 61 ± 8 | 58 ± 7 | 55 ± 7 |
Ipconazole | 93 ± 17 | 75 ± 11 | 72 ± 13 | 49 ± 8 |
Metconazole | 84 ± 14 | 69 ± 9 | 70 ± 12 | 61 ± 10 |
Penconazole | 87 ± 15 | 69 ± 5 | 59 ± 10 | 63 ± 6 |
Prochloraz | 88 ± 17 | 77 ± 12 | 66 ± 9 | 54 ± 8 |
Tetraconazole | 92 ± 17 | 84 ± 10 | 68 ± 11 | 69 ± 8 |
Tebuconazole | 81 ± 12 | 73 ± 11 | 55 ± 9 | 68 ± 7 |
Dimoxystrobin | 79 ± 15 | 65 ± 9 | 67 ± 15 | 72 ± 6 |
Famoxadone | 74 ± 8 | 62 ± 8 | 53 ± 6 | 8 ± 7 |
Metaflumizone | 90 ± 17 | 65 ± 2 | 77 ± 15 | 3 ± 1 |
Ciprofloxacina | 86 ± 18 | 94 ± 18 | 53 ± 18 | 92 ± 7 |
Analyte | Percentage Recoveries in Surface Water + ACN 25% + Analyte a 100 ng L−1 at Time 0 | Percentage Recoveries in Surface Water + ACN 25% + Analyte a 100 ng L−1 at Time 24 h | Percentage Differences |
---|---|---|---|
Sulfamethoxazole | 99 ± 6 | 114 ± 7 | −15.5 |
Trimethoprim | 70 ± 5 | 70 ± 5 | 0.5 |
Velanfaxine | 78 ± 7 | 82 ± 6 | −5.6 |
O-Desmethylvenlafaxine | 75 ± 4 | 88 ± 4 | −16.9 |
Clotrimazole | 71 ± 8 | 75 ± 7 | −5.2 |
Fluconazole | 80 ± 3 | 74 ± 8 | 7.1 |
Miconazole | 110 ± 8 | 83 ± 2 | 24.2 |
Imazalil | 74 ± 9 | 61 ± 4 | 17.1 |
Ipconazole | 88 ± 9 | 75 ± 9 | 15.2 |
Metconazole | 79 ± 10 | 69 ± 8 | 13.1 |
Penconazole | 83 ± 8 | 69 ± 3 | 17.3 |
Prochloraz | 82 ± 11 | 77 ± 13 | 6.5 |
Tetraconazole | 83 ± 9 | 84 ± 7 | −0.8 |
Tebuconazole | 81 ± 6 | 73 ± 5 | 9.9 |
Dimoxystrobin | 84 ± 8 | 65 ± 4 | 22.2 |
Famoxadone | 85 ± 11 | 62 ± 7 | 27.1 |
Metaflumizone | 73 ± 10 | 65 ± 6 | 11.0 |
Dimoxystrobin | 103 ± 5 | 94 ± 9 | 9.1 |
Method Steps | Eluent Used | Exhaust Line or Sample Line |
---|---|---|
Condition SPE Disk | 10 mL ACN | Exhaust line |
Load Sample | 100 mL samples | Sample line |
Elute Sample Container | 25 mL ACN | Sample line |
Air Dry Disk Timer | 30 sec by nitrogen | Sample line |
Pause | ||
Clean System | 20 mL Methanol/water 50/50 | Exhaust line |
Analyte | Percentage Recoveries in Surface Water + Analyte at 100 ng L−1 at Time 168 h Using SPE Procedures |
---|---|
Ulfamethoxazole | 102 ± 7 |
Trimethoprim | 81 ± 2 |
Velanfaxine | 110 ± 9 |
O-Desmethylvenlafaxine | 108 ± 2 |
Clotrimazole | 92 ± 11 |
Fluconazole | 110 ± 4 |
Miconazole | 94 ± 14 |
Imazalil | 105 ± 12 |
Ipconazole | 95 ± 10 |
Metconazole | 103 ± 5 |
Penconazole | 106 ± 10 |
Prochloraz | 111 ± 5 |
Tetraconazole | 111 ± 8 |
Tebuconazole | 102 ± 12 |
Dimoxystrobin | 118 ± 4 |
Famoxadone | 72 ± 2 |
Metaflumizone | 79 ± 2 |
Ciprofloxacin | 99 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreca, S.; Forni, C.; Colzani, L.; Clerici, L.; Daverio, D.; Dellavedova, P. Study on the Stability of Antibiotics, Pesticides and Drugs in Water by Using a Straightforward Procedure Applying HPLC-Mass Spectrometric Determination for Analytical Purposes. Separations 2021, 8, 179. https://doi.org/10.3390/separations8100179
Barreca S, Forni C, Colzani L, Clerici L, Daverio D, Dellavedova P. Study on the Stability of Antibiotics, Pesticides and Drugs in Water by Using a Straightforward Procedure Applying HPLC-Mass Spectrometric Determination for Analytical Purposes. Separations. 2021; 8(10):179. https://doi.org/10.3390/separations8100179
Chicago/Turabian StyleBarreca, Salvatore, Carola Forni, Luisa Colzani, Laura Clerici, Daniela Daverio, and Pierluisa Dellavedova. 2021. "Study on the Stability of Antibiotics, Pesticides and Drugs in Water by Using a Straightforward Procedure Applying HPLC-Mass Spectrometric Determination for Analytical Purposes" Separations 8, no. 10: 179. https://doi.org/10.3390/separations8100179
APA StyleBarreca, S., Forni, C., Colzani, L., Clerici, L., Daverio, D., & Dellavedova, P. (2021). Study on the Stability of Antibiotics, Pesticides and Drugs in Water by Using a Straightforward Procedure Applying HPLC-Mass Spectrometric Determination for Analytical Purposes. Separations, 8(10), 179. https://doi.org/10.3390/separations8100179