Analysis of Selected Mycotoxins in Maize from North-West South Africa Using High Performance Liquid Chromatography (HPLC) and Other Analytical Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sampling and Sample Preparation
2.3. Mycotoxin Analysis
2.3.1. Immuno-Affinity Column (IAC) Mycotoxin Extraction and Clean-Up
2.3.2. Thin Layer Chromatography (TLC)
2.3.3. High Performance Liquid Chromatography (HPLC)
2.3.4. Enzyme Linked Immunosorbent Assay (ELISA)
2.4. Recovery Analysis
2.5. Statistical Analysis
3. Results
3.1. Determination of Mycotoxins Using Thin Layer Chromatography (TLC)
3.2. Mycotoxin Determination Using HPLC and ELISA
3.3. Method Validation in Terms of Linearity and Recoveries
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bräse, S.; Encinas, A.; Keck, J.; Nising, C.F. Chemistry and biology of mycotoxins and related fungal metabolites. Chem. Rev. 2009, 109, 3903–4399. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Ekwomadu, T.; Mwanza, M. A decade of mycotoxin research in Africa: A review. In Mycotoxins, Occurence, Toxicology and Management Strategies; Rios, C., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2015; pp. 169–213. [Google Scholar]
- Placinta, C.; D’Mello, J.; Macdonald, A. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 1999, 78, 21–37. [Google Scholar] [CrossRef]
- Timbrell, J.A. Introduction to Toxicology, 3rd ed.; Taylor and Francis: London, UK, 2002. [Google Scholar]
- Basappa, S.C. Aflatoxins Formation, Analysis and Control; Alpha Science International Ltd.: Oxford, UK, 2009; pp. 66, 103–104. [Google Scholar]
- Duvick, J. Prospects for reducing fumonisin contamination of maize through genetic modification. Environ. Health Perspect. 2001, 12, 337–342. [Google Scholar]
- Muthomi, J.; Njenga, L.; Gathumbi, J. The Occurrence of Aflatoxins in Maize and Distribution of Mycotoxin-Producing Fungi in Eastern Kenya. Plant Pathol. J. 2009, 8, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Ekwomadu, T.I.; Gopane, R.E.; Mwanza, M. Occurrence of filamentous fungi in maize destined for human consumption in South Africa. Food Sci. Nutr. 2018, 25, 884–890. [Google Scholar] [CrossRef]
- Sydenham, E.W.; Theil, P.G.; Marasas, W.F.O.; Shephard, G.S.; VanSchalkwyk, D.J.; Koch, K.R. Natural occurrence of some Fusarium mycotoxins in corn from low and high oesophageal cancer prevalence areas of the Transkei, Southern, Africa. J. Agric. Food Chem. 1990, 38, 1900–1903. [Google Scholar] [CrossRef]
- Azziz-Baumgartner, E.; Lindblade, K.; Gieseker, K.; Rogers, H.S.; Kieszak, S.; Njapau, H.; Schleicher, R.; McCoy, L.F.; Misore, A.; DeCock, K.; et al. Case control study of an acute Aflatoxicosis outbreak, Kenya, 2004. Environ. Health Perspect. 2005, 113, 1779–1783. [Google Scholar] [CrossRef] [PubMed]
- Ncube, E.; Flett, B.; Agricultural Research Council Grain Crops Institute (ARC GCI). Maize Mycotoxin Research. 2012. Available online: http://www.grainsa.co.za (accessed on 24 August 2021).
- Shephard, G.S.; Van Der Westhuizen, L.; Gatyeni, P.M.; Somdyala, N.I.M.; Burger, H.-M.; Marasas, W.F.O. Fumonisin Mycotoxins in Traditional Xhosa Maize Beer in South Africa. J. Agric. Food Chem. 2005, 53, 9634–9637. [Google Scholar] [CrossRef]
- Burger, H.M.; Lombard, M.J.; Shephard, G.S.; Rheeder, J.R.; van der Westhuizen, L.; Gelderblom, W.C. Dietary fumonisin exposure in a rural population of South Africa. Food Chem. Toxicol. 2010, 48, 2103–2108. [Google Scholar] [CrossRef]
- Ekwomadu, T.I.; Dada, T.A.; Nleya, N.; Gopane, R.; Sulyok, M.; Mwanza, M. Variation of Fusarium Free, Masked, and Emerging Mycotoxin Metabolites in Maize from Agriculture Regions of South Africa. Toxins 2020, 12, 149. [Google Scholar] [CrossRef] [Green Version]
- Senyuva, H.Z.; Gilbert, J. Immunoaffinity column clean-up techniques in food analysis. J. Chromatogr. B 2010, 878, 115–132. [Google Scholar] [CrossRef]
- Razzazi-Fazeli, E.; Reiter, E. (Eds.) Sample Preparation and Clean up in Mycotoxin Analysis: Principles, Applications and Recent Developments; Woodhead Publishing: Cambridge, UK, 2011; pp. 37–70. [Google Scholar]
- Patterson, D.S.P.; Roberts, B.A. Mycotoxins in animal feedstuffs: Sensitive thin layer chromatography detection of aflatoxin, ochratoxin A, sterigmatocystin, zearalenone and T-2 toxin. J. Assoc. Off. Anal. Chem. 1979, 62, 1265–1267. [Google Scholar] [CrossRef]
- Dutton, M.F. Mycotoxin research in South Africa. Adv. Appl. Microbiol. 2003, 53, 23–24. [Google Scholar]
- Abdulkadar, A.; Al-Ali, A.A.; Al-Kildi, A.M.; Al-Jedah, J.H. Mycotoxins in food products available in Qatar. Food Control 2004, 15, 543–548. [Google Scholar] [CrossRef]
- Njobeh, P.B.; Dutton, M.F.; Koch, S.H.; Chuturgoon, A.; Stoev, S.; Seifert, K. Contamination with storage fungi of human food from Cameroon. Int. J. Food Microbiol. 2009, 135, 193–198. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Worldwide Regulations for Mycotoxins in Food and Feed in 2003; FAO: Rome, Italy, 2004; p. 81. [Google Scholar]
- Peraica, M.; Radić, B.; Lucić, A.; Pavlović, M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 1999, 77, 754–766. [Google Scholar] [PubMed]
- Bhat, R.V.; Vasanthi, S. Food Safety in Food Security and Food Trade: Mycotoxin Food Safety Risk in Developing Countries; International Food Policy Research Institute (Brief 3): Washington, WA, USA, 2003. [Google Scholar]
- Marasas, W.F.O.; Riley, R.T.; Hendricks, K.A.; Stevens, V.L.; Sadler, T.W.; Waes, J.G.-V.; Missmer, S.A.; Cabrera, J.; Torres, O.; Gelderblom, W.C.A.; et al. Fumonisins Disrupt Sphingolipid Metabolism, Folate Transport, and Neural Tube Development in Embryo Culture and In Vivo: A Potential Risk Factor for Human Neural Tube Defects among Populations Consuming Fumonisin-Contaminated Maize. J. Nutr. 2004, 134, 711–716. [Google Scholar] [CrossRef] [PubMed]
- European Union. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs (Text with EEA Relevance). 2006. Available online: http://extwprlegs1.fao.org/docs/pdf/eur68134.pdf (accessed on 24 August 2021).
- European Union. Commission Regulation (EC) No. 1126/2007 of 28 September 2007 Amending Regulation (EC) No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Fusarium Toxins in Maize and Maize Products. 2007. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:255:0014:0017:EN:PDF (accessed on 24 August 2021).
- Cardwell, K.F. Mycotoxin in Foods—Anti-Nutritional Factors; International Institute of Tropical Agricul: Cotonou, Benin, 1999. [Google Scholar]
- Turner, P.C. The molecular epidemiology of chronic aflatoxin-driven impaired child growth. Scientifica 2013, 2013, 152879. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.Y.; Egal, S.; Hounsa, A.; Turner, P.C.; Hall, A.J.; Cardwell, K.F.; Wild, C.P. Determinants of aflatoxin exposure in young children from Benin and Togo, West Africa: The critical role of weaning. Int. J. Epidemiol. 2003, 32, 556–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.Y.; Hounsa, A.; Egal, S.; Turner, P.C.; Sutcliffe, A.E.; Hall, A.J.; Cardwell, K.; Wild, C.P. Postweaning Exposure to Aflatoxin Results in Impaired Child Growth: A Longitudinal Study in Benin, West Africa. Environ. Health Perspect. 2004, 112, 1334–1338. [Google Scholar] [CrossRef]
- Jiang, Y.; Jolly, P.E.; Ellis, W.O.; Wang, J.-S.; Phillips, T.D.; Williams, J.H. Aflatoxin B1 albumin adduct levels and cellular immune status in Ghanaians. Int. Immunol. 2005, 17, 807–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galal, N.; Gamal El-Din, R.M.; Arafa, A.; Mohamad, I.M.; Abdel-Wahhab, M.A. Aflatoxin levels in Egyptian neonates with unexplainable neonatal jaundice: Morbidity and correlation to maternal assays in breast milk. Egypt. J. Neonatol. 2006, 7, 161–169. [Google Scholar]
- Shephard, G.S. Aflatoxin and food safety: Recent African perspectives. In Aflatoxin and Food Safety; Abbas, H.K., Ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2005; pp. 15–17. [Google Scholar]
- Ncube, E. Mycotoxin Levels in Subsistence Farming Systems in South Africa. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2008. [Google Scholar]
- CAST. Potential economic costs of mycotoxins in the United States. In Mycotoxins: Risks in Plant, Animal and Human Systems; Task Force Report No. 139; Council for Agricultural Science and Technology: Ames, IA, USA, 2003; pp. 136–142. [Google Scholar]
- Richard, J.L. Some major mycotoxins and their mycotoxicoses—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Krska, R.; Richard, J.L.; Schuhmacher, R.; Slate, A.B.; Whitaker, T.B. Romer Labs Guide to Mycotoxins, 4th ed.; Binder, E.M., Krska, R., Eds.; Anytime Publishing Services: Leicestershire, UK, 2012. [Google Scholar]
- Sangare-Tigori, B.; Dem, A.A.; Kouadio, H.J.; Betbeder, A.-M.; Dano, D.S.; Moukha, S.; Creppy, E.E. Preliminary survey of ochratoxin A in millet, maize, rice and peanuts in Côte d’Ivoire from 1998 to 2002. Hum. Exp. Toxicol. 2006, 25, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Mulunda, M.; Dzoma, B.; Nyirenda, M.; Bakunzi, F. Mycotoxins occurrence in selected staple food in main markets from Lubumbashi, DR Congo. J. Food Agric. Environ. 2013, 11, 51–54. [Google Scholar]
- MasŁowska, J.; Owczarek, A.; Kucharska, U. Determination of aflatoxins in food products by the ELISA method. Czech J. Food Sci. 2018, 19, 8–12. [Google Scholar]
- Omar, S.S.; Haddad, M.A.; Parisi, S. Validation of HPLC and Enzyme-Linked Immunosorbent Assay (ELISA) Techniques for Detection and Quantification of Aflatoxins in Different Food Samples. Foods 2020, 9, 661. [Google Scholar] [CrossRef] [PubMed]
- Rheeder, J.P. Guidelines on the Application of Good Agricultural Practices (GAP) and the HACCP System in Mycotoxin Prevention and Control in South Africa; South African National Health Department, Food Control Directorate: Pretoria, South Africa, 2008. [Google Scholar]
- Fandohan, P.; Hell, K.; Marasas, W.F.O.; Wingfield, M.J. Infection of maize by Fusarium species and contamination with fumonisins in Africa. Afr. J. Biotechnol. 2003, 2, 570–579. [Google Scholar]
- FDA (Food and Drug Administration). Fumonisin Levels in Human Foods and Animal Feeds. 2001; Final Guidance Revised on 9 November 2001. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-fumonisin-levels-human-foods-and-animal-feeds (accessed on 24 August 2021).
- European Union. Commission Regulation (EC) No. 105/2010 of 5 February 2010 Amending Regulation (EC) No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Ochratoxin A. 2010. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:035:0007:0008:EN:PDF (accessed on 24 August 2021).
- Shephard, G.S.; Marasas, W.F.O.; Burger, H.-M.; Somdyala, N.I.M.; Rheeder, J.P.; van der Westhuizen, L.; Gatyeni, P.; van Schalkwyk, D.J. Exposure assessment for fumonisins in the former Transkei region of South Africa. Food Addit. Contam. 2007, 24, 621–629. [Google Scholar] [CrossRef]
- Stoev, S.D.; Denev, S.; Dutton, M.F.; Njobeh, P.B.; Mosonik, J.S.; Steenkamp, P.A.; Petkov, I. Complex aetiology and pathology of mycotoxic nephropathy in South African pigs. Mycotoxin Res. 2010, 10, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Mwanza, M. A Comparative Study of Fungi and Mycotoxin Contamination in Animal Products from Selected Rural and Urban Areas of South Africa with Particular Reference to the Impact of This on the Health of Rural Black People. Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa, 2011. [Google Scholar]
- Di Mavungu, J.D.; de Saeger, S. Masked mycotoxins in food and feed:challenges and analytical approaches. In Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed; Saeger, S.D., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 385–390. [Google Scholar]
- Marasas, W.F.O.; Gelderblom, W.C.A.; Shephard, G.S.; Vismer, H.F. Mycotoxins: A global problem. In Myctoxins: Detection Methods, Management, Public Health and Agricultural Trade; Leslie, J.F., Bandyopadhyay, R., Visconti, A., Eds.; CAB International: Wallingford, UK, 2008; p. 29. [Google Scholar]
Mycotoxins Analyzed | Aflatoxins | Fumonisins | Ochratoxin A | Zearalenone |
---|---|---|---|---|
Mobile phase: First run | Dichloromethane/Ethyl-acetate/Propan-2-ol (DEP) (90:5:5 v/v/v) | Butanol/Water/Acetic acid (BWA) (12:5:3 v/v/v) | Dichloromethane/Ethyl-acetate/Propan-2-ol (DEP) (90:5:5 v/v/v) | Dichloromethane/Acetone (DA) (90/10 v/v) |
Mobile phase: Second run | Toluene/Ethyl-acetate/Formic acid (TEF) (6:3:1 v/v/v) | Butanol/Water/Acetic acid (BWA) (12:5:3 v/v/v) | Toluene/Ethyl-acetate/Formic acid (TEF) (6:3:1 v/v/v) | Dichloromethane/Acetone (DA) (90/10 v/v) |
Derivatizing reagent | Not applicable | Anisaldehyde solution | Not applicable | Diazotized benzidine (Dianisidine) |
Mycotoxins Analyzed | Aflatoxins | Fumonisins | Ochratoxin A | Zearalenone |
---|---|---|---|---|
Extraction method | IAC | IAC | IAC | IAC |
Sample amount | 50 g/100 mL, 2 g/10 mL | 25 g/125 mL, 25 g/50 mL | 2 g/15 mL | 25 g/125 mL, 5 g/25 mL |
Extract for autosampling | 500 µL | 250 µL OPA and 50 µL extract | 500 µL | 500 µL |
Standards concentrations | 1.25, 2.5, 5.0 ng/mL | 10, 20, 40 ng/mL | 10,20,40 ng/mL | 5, 10, 20 µg/mL |
Injection volume | 20 µL | 20 µL | 20 µL | 20 µL |
Flow rate | 0.8 mL/min | 1 mL/min | 1 mL/min | 1 mL/min |
HPLC detector | Fluorescent | Fluorescent | Fluorescent | Fluorescent |
Excitation/emission wavelength | 365 nm/440 nm | 335 nm/440 nm | 336 nm/465 nm | 274 nm/418 nm |
Mycotoxins | % Incidence |
---|---|
Fumonisin B1 (FB1) | 21 |
Ochratoxin A (OTA) | 13 |
Zearalenone (ZEA) | 8 |
Aflatoxin (AFs) | Not detected |
Mycotoxins | Positive % | Range (µg/kg) | Mean (µg/kg) |
---|---|---|---|
FB1 | 100 | 28.8–1566.7 | 672.5 (±9.103) |
FB2 | 39.8 | 12.4–239.0 | 186.4 (±1.031) |
FBs | 79.5 | 12.4–1652.9 | 906.2 (±20.23) |
AFB1 | 38.0 | 0.10–4.96 | 3.766 (±0.321) |
AFB2 | 23.0 | 0.009–4.92 | 3.062 (±0.025) |
AFG1 | 20.5 | 0.007–1.94 | 0.16 (±0.014) |
AFG2 | 19.4 | 0.002–1.78 | 0.35 (±0.035) |
AFs | 26.7 | 0.080–9.34 | 4.63 (±0.251) |
ZEA | 55.5 | 0.2–51.30 | 39.2 (±0.045) |
OTA | 97.8 | 3.6–19.44 | 8.6 (±0.132) |
Mycotoxins | Positive % | Range (µg/kg) | Mean (µg/kg) |
---|---|---|---|
FB1 | 98.6 | 4.8–1354.2 | 535.6 (±9.103) |
FB2 | 37.9 | 4.2–136.0 | 120.0 (±1.031) |
FBs | 70.5 | 4.2–1401.0 | 703.1 (±20.23) |
AFB1 | 37.0 | 0.4–4.8 | 3.57 (±0.045) |
AFB2 | 23.0 | 0.16–4.2 | 2.95 (±0.025) |
AFG1 | 22.7 | 0.12–1.90 | 0.16 (±0.025) |
AFG2 | 15.5 | 0.08–1.4 | 0.34 (±0.045) |
AFs | 25.0 | 0.32–8.6 | 4.10 (±0.251) |
ZEA | 50.0 | 0.1–36.8 | 17.5 (±0.045) |
OTA | 93.0 | 1.6–9.89 | 5.3 (±0.142) |
Mycotoxin | Positive % | Range (µg/kg) | Mean (µg/kg) |
---|---|---|---|
AFs (ss) | 45.1 | 0.00–9.27 | 2.56 (±0.15) |
AFs (c) | 41.6 | 0.00–5.51 | 0.59 (±0.08) |
ZEA(ss) | 79.5 | 1.07–48.0 | 41.0 (±1.06) |
ZEA(c) | 77.0 | 0.74–38.0 | 18.73 (±2.13) |
OTA(ss) | 100.0 | 1.05–23.2 | 12.8 (±2.07) |
OTA (c) | 100.0 | 0.02–11.5 | 5.9 (±1.05) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekwomadu, T.I.; Dada, T.A.; Akinola, S.A.; Nleya, N.; Mwanza, M. Analysis of Selected Mycotoxins in Maize from North-West South Africa Using High Performance Liquid Chromatography (HPLC) and Other Analytical Techniques. Separations 2021, 8, 143. https://doi.org/10.3390/separations8090143
Ekwomadu TI, Dada TA, Akinola SA, Nleya N, Mwanza M. Analysis of Selected Mycotoxins in Maize from North-West South Africa Using High Performance Liquid Chromatography (HPLC) and Other Analytical Techniques. Separations. 2021; 8(9):143. https://doi.org/10.3390/separations8090143
Chicago/Turabian StyleEkwomadu, Theodora Ijeoma, Toluwase Adeseye Dada, Stephen Abiola Akinola, Nancy Nleya, and Mulunda Mwanza. 2021. "Analysis of Selected Mycotoxins in Maize from North-West South Africa Using High Performance Liquid Chromatography (HPLC) and Other Analytical Techniques" Separations 8, no. 9: 143. https://doi.org/10.3390/separations8090143
APA StyleEkwomadu, T. I., Dada, T. A., Akinola, S. A., Nleya, N., & Mwanza, M. (2021). Analysis of Selected Mycotoxins in Maize from North-West South Africa Using High Performance Liquid Chromatography (HPLC) and Other Analytical Techniques. Separations, 8(9), 143. https://doi.org/10.3390/separations8090143