Enhanced Photocatalytic Activity of CuWO4 Doped TiO2 Photocatalyst Towards Carbamazepine Removal under UV Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Catalyst (CuWO4-TiO2)
2.3. Characterization of Catalysts
2.4. Photocatalytic Experiments
3. Results and Discussion
3.1. Characterization of Catalysts
3.2. Photocatalytic Activity
3.2.1. Effect of pH
3.2.2. Effect of Chemical Scavengers
3.2.3. Effect of Hydrogen Peroxide (H2O2)
3.2.4. Effect of Contaminant Ions and Humic Acid
3.3. Possible Mechanism of CuWO4-TiO2
3.4. Visible Light Photocatalyst Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The 17 Goals. Available online: https://sustainabledevelopment.un.org/sdgs (accessed on 28 February 2020).
- Anucha, C.B.; Altin, I.; Biyikglioglu, Z.; Bacaksiz, E.; Polat, I.; Stathopoulos, V.N. Synthesis, characterization, and photocatalytic evaluation of manganese (III) phthalocyanine sensitized ZnWO4 (ZnWO4MnPc) for bisphenol a degradation under UV irradiation. Nanomaterials 2020, 10, 2139. [Google Scholar] [CrossRef]
- Jimenez-Holgado, C.; Crimatopoulos, C.; Stathopoulos, V.N.; Sakkas, V. Investigating the utility of fabric phase sorptive extraction and HPLC-UV-Vis/DAD to determine antidepressant drugs in environmental aqueous samples. Separations 2020, 7, 39. [Google Scholar] [CrossRef]
- Rosenfeld, P.E.; Feng, L.G.H. Emerging contaminants. Risks Haz. Wastes 2011, 1, 215–222. [Google Scholar]
- Jurado, A.; Sunez, E.V.; Ramirez, J.C.; Lopez de Alda, M.; Pujades, E.; Barcelo, D. Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context. Sci. Total Environ. 2012, 440, 82–94. [Google Scholar] [CrossRef]
- Darabi, K.; Azhdarpoor, A.; Dehghani, M. Degradation of carbamazepine in aqueous solution using ozonation process removal of carbamazepine. J. Health Sci. Surveill. Sys. 2009, 7, 17–21. [Google Scholar]
- NORMAN—Network of Reference Laboratories, Research Centres and Related Organizations for Monitoring of Emerging Environmental Substances. 2016. Available online: http://www.norman-network.net/ (accessed on 28 February 2020).
- Susan, D.; Richardson, T.; Ternes, A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2014, 86, 2813–2848. [Google Scholar]
- He, D.; Yang, Y.; Tang, J.; Zhou, K.; Chen, W.; Chen, Y.; Dong, Z. Synergistic effect of TiO2-CuWO4 on the photocatalytic degradation of atrazine. Environ. Sci. Pollut. Res. 2019, 26, 12359–12367. [Google Scholar] [CrossRef]
- Janczarek, M.; Kowalska, E. On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems. Catalyst 2017, 7, 317. [Google Scholar] [CrossRef] [Green Version]
- Paola, A.D.; Palmisano, L.; Augugliaro, V. Photocatalytic behaviour of mixed WO3/WS2 powders. Cat. Today 2000, 58, 141–149. [Google Scholar] [CrossRef]
- Lam, S.W.; Hermawan, M.; Coleman, H.M.; Fisher, K.; Amal, R. The role of copper (II) ions in the photocatalytic oxidation of 1,4-dioxane. J. Mol. Catal. A 2007, 278, 152–159. [Google Scholar] [CrossRef]
- Wan, L.; Sheng, J.; Chen, H.; Xu, Y. Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3. J. Haz. Mater. 2013, 262, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiche, H.; Dunn, W.W.; Bard, A.J. Heterogeneous photocatalytic and photosynthetic deposition of copper on TiO2 and WO3 powders. J. Phys. Chem. 1979, 83, 2248–2251. [Google Scholar] [CrossRef]
- Lei, N.; Wang, L.; Zhu, H. Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO2 nanocomposites: A mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper. Appl. Catal. B 2016, 82, 414–423. [Google Scholar] [CrossRef]
- Xiong, X.; Chen, H.; Xu, Y. Improved photocatalytic activity of TiO2 on the addition of CuWO4. J. Phys. Chem. C 2015, 119, 5946–5953. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Y. Enhanced visible-light photoactivity of CuWO4 through a surface-deposited CuO. J. Phys. Chem. C 2014, 118, 9982–9989. [Google Scholar] [CrossRef]
- Vignesh, K.; Priyanka, R.; Hariharan, R.; Rajarajan, M.; Suganthi, A. Fabrication of CdS and CuWO4 modified TiO2 nanoparticles and its photocatalytic activity under visible light irradiation irradiation. J. Ind. Eng. Chem. 2014, 20, 435–443. [Google Scholar] [CrossRef]
- Mavric, T.; Valant, M.; Foster, M.; Cowan, A.J.; Lavrencic, U.; Emin, S. Design of a highly photocatalytic active ZnO/CuWO4 nanocomposite. J. Colloid Int. Sci. 2016, 483, 93–101. [Google Scholar] [CrossRef]
- Siah, W.R.; Lintang, H.O.; Shamsuddin, M.; Yoshida, H.; Tuliati, L. Masking effect of copper oxides photodeposited on titanium dioxide: Exploring UV, visible, and solar light activity. Catal. Sci. Technol. 2016, 6, 5079–5087. [Google Scholar] [CrossRef]
- Lan, X.; Wang, L.; Zhang, B.; Tian, B.; Zhan, J. Preparation of lanthanum and boron co-doped TiO2 modified by sol-gel method and study of their photocatalytic activity. Catal. Today 2014, 224, 163–170. [Google Scholar] [CrossRef]
- Mugundan, S.; Rajamannan, G.; Viruthagiri, N.; Shanmugam, R.; Gobi, P. Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique. Appl. Nanosci. 2015, 5, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.A.; Khali, M.H.; Abdel-Ghany, H.A.; El-Gharbawy, S.A. Preparation and characterization of CuWO4 nanoparticles. J. Inorg. Nano Met. Chem. 2020. [Google Scholar] [CrossRef]
- Lykaki, M.; Stefa, S.; Carabiniero, S.A.C.; Pandis, P.K.; Stathopoulos, V.N.; Kosolakis, M. Facet-dependent reactivity of Fe2O3/CeO2 nanocomposites: Effects of ceria morphology on CO oxidation. Catalysts 2019, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Trens, P.; Stathopoulos, V.N.; Hudson, M.J.; Pomonis, P. Synthesis and characterization of packed mesoporous tungstenosilicates: Application to the catalytic dehydrogenation of 2-propanol. Appl. Catal. A 2004, 263, 103–108. [Google Scholar] [CrossRef]
- Bespalko, Y.; Kuznetsova, T.; Kriger, T.; Chesalov, Y.; Lapina, O.; Ischenko, A.; Larina, T.; Sadykov, V.; Stathopoulos, V. La2Zr2O7/LaAlO3 composite prepared by mixing precipitated precursors: Evolution of its structure under sintering. Mater. Chem. Phys. 2020, 251, 123093. [Google Scholar] [CrossRef]
- Lima, A.E.B.; Costa, M.J.S.; Santos, R.S.; Batista, N.C.; Calvacante, L.C.; Longo, E.; Luz, G.E., Jr. Preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochem. Acta 2017, 256, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Turkten, N.; Cinar, Z.; Tomruk, A.; Bekbolet, M. Copper-doped TiO2 photocatalysts: Application to drinking water by humic acid degradation. Enviton. Sci. Pollut. Res. 2019, 26, 36096–36106. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, A.K.L.; Shamaila, S.; Tian, B.; Chen, F.; Zhang, J. One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity. Appl. Catal. B 2009, 91, 397–405. [Google Scholar] [CrossRef]
- Liu, G.; Han, C.; Pelaez, M.; Zhu, D.; Liao, S.; Likodimos, V.; Ioannidis, N.; Kontos, A.G.; Falaras, P.; Dunlop, P.S.M.; et al. Synthesis, characterization and photocatalytic evaluation of visible light activated C- doped TiO2 nanoparticles. Nanotechnology 2012, 23, 294003. [Google Scholar] [CrossRef]
- Praveen, P.; Viruthagiri, G.; Mugundan, S.; Shanmugam, N. Structural, optical and morphological analysis of pristine titanium di oxide nanoparticles- synthesized via sol-gel route. Spectrochim. Acta Part A 2014, 117, 622–629. [Google Scholar] [CrossRef]
- Salmas, C.E.; Stathopoulos, V.N.; Promonis, P.J.; Androustsopoulos, G.P. Pore structure-chemical composition interactions of new high surface area manganese based mesoporous materials: Materials preparation, charcaterization, and catalytic activity. Lagmuir 2002, 18, 423–432. [Google Scholar] [CrossRef]
- Pontes do Nascimento, N.M.; Machado de Lima, B.R.; Zamian, J.R.; Ferreira da Costa, C.E.; Santos do Nascimento, L.E.; Luque, R.; Narciso da Rocha Filho, G. Synthesis of mesoporous Zn1−xMxAl2O4 substituted Co2+ and Ni2+ ions and application in the photodegradation of rhodamine B. Materials 2020, 13, 2150. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, F.; Di Camillo, D.; Maccarone, L.; Santucci, S.; Lozzi, L. Electrospun Cu-, W- and Fe-doped TiO2 nanofibres for photocatalytic degradation of rhodamine 6G. J. Nanopart. Res. 2013, 15, 1982. [Google Scholar] [CrossRef]
- Srivasan, M.; White, T. Degradation of methylene blue by three-dimensionally ordered macroporous titania. Environ. Sci. Technol. 2007, 41, 4405–4409. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.d.R.; Abd Hamid, S.B.; Basirun, W.J.; Suhaimy, S.H.M.; Che Mat, A.N. A sol- gel derived, copper-doped, titanium dioxide- reduced graphene oxide nanocomposite electrode for the photocatalytic reduction of CO2 to methanol and formic acid. RSC Adv. 2015, 5, 77803. [Google Scholar] [CrossRef]
- Mathew, S.; Ganguly, P.; Rhatigan, S.; Kumaravel, V.; Byrne, C.; Hinder, S.J.; Bartlett, J.; Nolan, M.; Pillai, S.C. Cu doped TiO2: Visible light assisted photocatalytic antimicrobial activity. Appl. Sci. 2018, 8, 2067. [Google Scholar] [CrossRef] [Green Version]
- Bohra, D.; Smith, W.A. Improved charge separation via Fe doping of copper tungstate photoanodes. Phys. Chem. Chem. Phys. 2015, 17, 9857–9866. [Google Scholar] [CrossRef] [PubMed]
- Gavade, N.L.; Babar, S.B.; Kadam, A.N.; Gophane, A.D.; Garadkar, K.M. Fabication of M@CuxO/ZnO (M = Ag, Au). Heterostructured nanocomposite with enhanced photocatalytic performance under sunlight. Ind. Eng. Chem. Res. 2017, 56, 14489–14501. [Google Scholar] [CrossRef]
- Dashora, A.; Patel, N.; Kothari, D.; Ahuja, B.; Miotello, A. Formation of an intermediate band in the energy gap of TiO2 by Cu–N-codoping: First principles study and experimental evidence. Sol. Energy Mater. Sol. Cells 2014, 125, 120–126. [Google Scholar] [CrossRef]
- Hu, Q.; Huang, J.; Li, G.; Jiang, Y.; Lan, H.; Guo, W.; Cao, Y. Origin of the improved photocatalytic activity of Cu incorporated TiO2 for hydrogen generation from water. Appl. Surf. Sci. 2016, 382, 170–177. [Google Scholar] [CrossRef]
- Li, C.; Guo, B.; Peng, B.; Yue, C.; Diao, P. Copper tungstates (CuWO4) nanoflakes coupled with cobalt phosphate (Co-Pi) for effective photoelectrochemical water splitting. Int. J. Electrochem. Sci. 2019, 14, 9017–9029. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Lalic, M.V.; Popovic, Z.S.; Vukajlovic, F.R. Ab initio study of electronic, magnetic, and optical properties of CuWO4 tungstate. Compu. Mat. Sci. 2011, 50, 1179–1186. [Google Scholar]
- Yourey, J.E.; Pyper, K.J.; Kurtz, J.B.; Bartlett, M.B. Chemical stability of CuWO4 for photoelectrochemical water oxidation. J. Phys. Chem. C 2013, 117, 8708–8718. [Google Scholar] [CrossRef]
- Mavengere, S.; Jung, S.-C.; Kim, J.-S. Visible light photocatalytic activity of NaYF4: (Yb, Er)- CuO/TiO₂ composite. Catalyst 2018, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Bang-De, L.; Xian-Qiang, X.; Yi-Ming, X. Improved photocatalytic activity for phenol degradation of rutile TiO2 on the addition of CuWO4 and possible mechanism. Acta Phys. Chim. Sin. 2016, 32, 1758–1764. [Google Scholar]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C 2008, 9, 1–12. [Google Scholar] [CrossRef]
- Fang, G.; Zhou, D.; Dionysiou, D.D. Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: Demonstration in the degradation of 2- chlorobiphenyl. J. Hazard. Mater. 2013, 250–251, 68–75. [Google Scholar] [CrossRef]
- Mori, A.; Kohno, M.; Masumizu, T.; Noda, Y.; Packer, L. Guanidino compounds generate reactive oxygen species. Biochem. Mol. Biol. Int. 1996, 40, 135–143. [Google Scholar] [CrossRef]
- Canle, L.M.; Santaballa, J.A.; Vulliet, E. On the mechanism of TiO2-photocatalyzed degradation of aniline derivatives. J. Photochem. Photobiol. A 2005, 175, 192–200. [Google Scholar] [CrossRef]
- Velagraki, T.; Mantzavinos, D. Conversion of benzoic acid during TiO2-mediated photocatalytic in water. Chem. Eng. J. 2008, 140, 15–21. [Google Scholar] [CrossRef]
- Haroune, L.; Salaun, M.; Menard, A.; Legault, C.-Y.; Bellenger, J.-P. Photodegradation of carbamazepine and three derivatives using TiO2 and ZnO: Effect of pH, ionic strength, and natural organic matter. Sci. Total Environ. 2014, 475, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-Y.; Zhao, L.; Guo, L.-H.; Zhang, H.; Chen, F.-J.; Yu, W.-C. Roles of Reactive Oxygen Species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV. J. Hazard. Mater. 2019, 369, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Lee, J.; Kim, H.; Hwang, Y.; Razzaq, A.; Jung, J.-W.; Cho, C.-H.; In, S.-I. Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earth-abundant materials: Reduced titania-Cu2O Z-scheme heterostructures. Appl. Catal. B 2020, 279, 119344. [Google Scholar] [CrossRef]
- Kim, H.R.; Razzaq, A.; Grimes, G.A.; In, S.-I. Heterojunction p-n-p Cu2O/S-TiO2/CuO: Synthesis and application to photocatalytic conversion of CO2 to methane. J. CO2 Util. 2017, 20, 91–96. [Google Scholar] [CrossRef]
Materials | dXRD (nm) | dTEM (nm) | SBET (m2/g) | Vp (cm3/g) | dp (nm) | Eg (eV) |
---|---|---|---|---|---|---|
TiO2 | 26.5 | 35.3 | 4.7 | 0.0047 | 5.6 | 3.2 |
0.05CuWO4-TiO2 | 28.0 | 36.3 | 2.3 | 0.0032 | 6.0 | 2.7 |
Test | Degradation Rate Constant (h−1) | R2 |
---|---|---|
TiO2 n,¤ | 0.8946 | 0.9993 |
CuWO4 n,¤ | 0.0463 | 0.9877 |
0.05CuWO4-TiO2 n,¤ | 1.9243 | 0.9751 |
1CuWO4-TiO2 n,¤ | 0.5937 | 0.9701 |
2CuWO4-TiO2 n,¤ | 0.3053 | 0.9922 |
3CuWO4-TiO2 n,¤ | 0.0463 | 0.9877 |
4CuWO4-TiO2 n,¤ | 0.0463 | 0.9877 |
pH effects on 0.05CuWO4-TiO2 | ||
pH = 7.78 | 1.6287 | 0.9779 |
pH = 3 | 2.3303 | 0.9701 |
pH = 5 | 0.2592 | 0.9976 |
pH = 9 | 0.5702 | 0.9381 |
pH = 11 | 0.2592 | 0.9976 |
Scavenger effects on 0.05CuWO4-TiO2 ¤ | ||
No Scavenger | 1.9243 | 0.9751 |
Benzoquinone (BQ) | 0.3224 | 0.8952 |
Isopropyl alcohol (IPA) | 0.2326 | 0.9006 |
Etheylenediamine tetracetic acid (EDTA) | 0.3496 | 0.9915 |
Na2SO4 | 0.7664 | 0.9884 |
H2O2 effects on 0.05CuWO4-TiO2 ¤ | ||
0 mM H2O2 | 1.9243 | 0.9751 |
5 mM H2O2 | 0.2015 | 0.9215 |
10 mM H2O2 | 0.1957 | 0.8332 |
Ion effects on 0.05CuWO4-TiO2: anions ¤,‡ | ||
No ion | 1.2112 | 0.9956 |
5 mg/L CO32− | 1.7302 | 0.9577 |
5 mg/L HCO3− | 0.4618 | 0.9978 |
5 mg/L SO42− | 0.4618 | 0.9978 |
5 mg/L NO3− | 0.4618 | 0.9978 |
Ion effects on 0.05CuWO4-TiO2: anions ¤,# | ||
No ion | 1.9243 | 0.9751 |
(20 mg/L (Cl−, SO42−)), 10 mg/L NO3−, 0.25 mg/L F−, 0.1 mg/L PO42−) | 0.0321 | 0.6545 |
(10 mg/L (Cl−, SO42−)), 5 mg/L NO3−, 0.1 mg/L F−, 0.05 mg/L PO42−)) * | 0.0221 | 0.6947 |
Ion effects on 0.05CuWO4-TiO2: cations ¤,# | ||
No ion | 1.6287 | 0.9793 |
(45 mg mg/L (Ca2+, Na+)), 35 mg/L Mg2+), 20 mg/L K+ | 2.6775 | 0.9897 |
(20 mg/L (Ca2+, Na+)), 15 mg/L Mg2+, 5 mg/L K+) * | 1.316 | 0.9994 |
NH4+ | 0.8565 | 0.9921 |
Humic acid (HA) effects ¤ | ||
0 mg/L HA | 1.9243 | 0.9751 |
5 mg/L HA | 0.7445 | 0.9864 |
10 mg/L HA | 0.1389 | 0.8896 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anucha, C.B.; Altin, I.; Bacaksız, E.; Kucukomeroglu, T.; Belay, M.H.; Stathopoulos, V.N. Enhanced Photocatalytic Activity of CuWO4 Doped TiO2 Photocatalyst Towards Carbamazepine Removal under UV Irradiation. Separations 2021, 8, 25. https://doi.org/10.3390/separations8030025
Anucha CB, Altin I, Bacaksız E, Kucukomeroglu T, Belay MH, Stathopoulos VN. Enhanced Photocatalytic Activity of CuWO4 Doped TiO2 Photocatalyst Towards Carbamazepine Removal under UV Irradiation. Separations. 2021; 8(3):25. https://doi.org/10.3390/separations8030025
Chicago/Turabian StyleAnucha, Chukwuka Bethel, Ilknur Altin, Emin Bacaksız, Tayfur Kucukomeroglu, Masho Hilawie Belay, and Vassilis N. Stathopoulos. 2021. "Enhanced Photocatalytic Activity of CuWO4 Doped TiO2 Photocatalyst Towards Carbamazepine Removal under UV Irradiation" Separations 8, no. 3: 25. https://doi.org/10.3390/separations8030025
APA StyleAnucha, C. B., Altin, I., Bacaksız, E., Kucukomeroglu, T., Belay, M. H., & Stathopoulos, V. N. (2021). Enhanced Photocatalytic Activity of CuWO4 Doped TiO2 Photocatalyst Towards Carbamazepine Removal under UV Irradiation. Separations, 8(3), 25. https://doi.org/10.3390/separations8030025