Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation and Methods
2.3. Synthesis and Characterization of Copper (II) Phthalocyanine (CuPc)
- 4-(4-benzo[d]thiazol-2-yl)-2-methoxyphenoxy) phthalonitrile (3)
- 2,9,16,24-tetrakis [4-(1,3-benzothiazol-2-yl)-2-methoxyphenoxy]-29H,31H-(2-)-κ2N29, N31CuPc (4)
2.4. Preparation of Film Coatings
2.5. Photocatalytic Measurements
3. Results and Discussion
3.1. Synthesis and Characterization of Copper (ii) Phthalocyanine (CuPc)
UV-Visible Absorption of CuPc
3.2. Characterization of Photocatalyst Structures
3.2.1. X-Ray Diffraction (XRD) Measurements
3.2.2. Fourier Transform Infrared (FTIR) Analysis
3.2.3. Scanning Electron Microscopy (SEM)
3.2.4. UV-Visible Spectroscopy (UV-Vis) Measurement
3.2.5. Steady-State Photoluminescence Measurement
3.3. Photocatalytic Activity
3.3.1. pH Effects
3.3.2. Effects of Chemical Scavengers
3.3.3. Photostability of TiO2/ZnO/CuPc
3.3.4. Possible Photodegradation Mechanism of TiO2/ZnO/CuPc
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahawi, M.S.E.; Hamza, A.; Bashammakh, A.S.; Al-Saggaf, W.T. An Overview on the Accumulation, Transformations, Toxicity, and Analytical Methods for the Monitoring of Persistent Organic Pollutants. Talanta 2010, 80, 1587–1597. [Google Scholar] [CrossRef]
- Anucha, C.B.; Altin, I.; Biyiklioglu, Z.; Bacaksiz, E.; Polat, I.; Stathopoulos, V.N. Synthesis, Characterization, and Photocatalytic Evaluation of Manganese (III) Phthalocyanine Sensitized ZnWO4 (ZnWO4MnPc) for Bisphenol A Degradation under UV Irradiation. Nanomaterials 2020, 10, 2139. [Google Scholar] [CrossRef]
- Anucha, C.B.; Altin, I.; Fabbri, D.; Degirmencioglu, I.; Calza, P.; Magnacca, G.; Stathopoulos, V.N.; Bacaksiz, E. Synthesis and Characterization of B/NaF and Silicon Phthalocyanine-Modified TiO2 and an Evaluation of Their Photocatalytic Removal of Carbamazepine. Separations 2020, 7, 71. [Google Scholar] [CrossRef]
- Holgado, C.J.; Crimatopoulos, C.; Stathopoulos, V.N.; Sakkas, V. Investigating the Utility of Fabric Phase Sorptive Extraction and HPLC-UV-Vis/DAD to Determine Antidepressant Drugs in Environmental Aqueous Samples. Separations 2020, 7, 39. [Google Scholar] [CrossRef]
- Scheneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.U.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919. [Google Scholar] [CrossRef] [PubMed]
- Linsebigler, A.L.; Guangquang, L.; Yates, J.T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Shahrezaei, M.; Babaluo, A.A.; Habibzadeh, S.; Haghighi, M. Photocatalytic Properties of 1D TiO2 Nanostructures Prepared rom Polyacrylamide Gel- TiO2 Nanopowders by Hydrothermal Synthesis. Eur. J. Inorg. Chem. 2017, 3, 694–703. [Google Scholar] [CrossRef]
- Kment, S.; Riboni, F.; Pausova, S.; Wang, L.; Han, H.; Hubicka, Z.; Krysa, J.; Schumuki, P.; Zboril, R. Photoanodes Based on TiO2 and α-Fe2O3 for Water Splitting- Superior Role of 1D Nanoarchitectures and of Combined Heterostructures. Chem. Soc. Rev. 2017, 46, 3716–3769. [Google Scholar] [CrossRef]
- Dal Santo, V.; Naldoni, A. Titanium Dioxide Photocatalysis. Catalysts 2018, 8, 591. [Google Scholar] [CrossRef] [Green Version]
- Pandis, P.K.; Perros, D.E.; Stathopoulos, V.N. Doped Apatite-Type Lanthanum Silicates in CO Oxidation Reaction. Catal. Commun. 2018, 114, 98–103. [Google Scholar] [CrossRef]
- Damaskinos, C.M.; Vasiliades, M.A.; Stathopoulos, V.N.; Efstathiou, A.M. The Effect of CeO2 Preparation Method on the Carbon Pathways in the Dry Reforming of Methane on Ni/CeO2 Studied by Transient Techniques. Catalysts 2019, 9, 621. [Google Scholar] [CrossRef] [Green Version]
- Stefa, S.; Lykaki, M.; Binas, V.; Pandis, P.K.; Stathopoulos, V.N.; Konsolakis, M. Hydrothermal Synthesis of ZnO-Doped Ceria Nanorods: Effects of ZnO Content on the Redox Properties and the CO Oxidation of Performance. Appl. Sci. 2020, 10, 7605. [Google Scholar] [CrossRef]
- Lykaki, M.; Stefa, S.; Carabiniero, S.A.C.; Pandis, P.K.; Stathopoulos, V.N.; Konsolakis, M. Facet-Dependent Reactivity of Fe2O3/CeO2 Nanocomposites: Effect of Ceria Morphology on CO Oxidation. Catalysts 2019, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Stefa, S.; Lykaki, M.; Fragkoulis, D.; Binas, V.; Pandis, P.K.; Stathopoulos, V.N.; Konsolakis, M. Effect of the Method of Preparation the Physicochemical Properties and the CO Oxidation Performance of the Nanostructured CeO2/TiO2 Oxides. Processes 2020, 8, 847. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.-Q.; Al-Deyab, S.S.; Lai, Y. A Review of One-Dimensional TiO2 Nanostructured Materials for Environmental and Energy Applications. J. Mater. Chem. A 2016, 4, 6772–6801. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tyrk, D.A. Titanium dioxide Photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Garcia, N.M.; Ignacio Maldonado, M.; Coronado, J.M.; Malato, S. Degradation Study of 15 Emerging Contaminants at Low Concentration by Immobilized TiO2 in a Plant. Catal. Today 2010, 151, 107–113. [Google Scholar] [CrossRef]
- Srikanth, B.; Goutham, R.; Naraya, B.; Ramprasath, A.; Gopinath, K.P. Recent Advancements in Supporting Materials for Immobilized Photocatalytic Applications in Wastewater Treatment. J. Environ. Manag. 2017, 200, 60–78. [Google Scholar] [CrossRef]
- Mofokeng, M.J.; Kumar, V.; Kroon, R.E.; Ntwaeaborwa OM, J. Structure and Optical Properties of Dy3+ Activated Sol-Gel ZnO-TiO2 Nanocomposites. J. Alloy Compd. 2017, 711, 121–131. [Google Scholar] [CrossRef]
- Siwinska, K.S.; Kubiak, A.; Piasecki, A.; Goscianska, J.; Nowaczyk, G.; Jurga, S.; Jesionowski, T. TiO2-ZnO Binary Oxide Systems: Comprehensive Characterization and Tests of Photocatalytic Activity. Materials (Basel) 2018, 11, 841. [Google Scholar] [CrossRef] [Green Version]
- Perovic, K.; de la Rosa, F.M.; Kovacic, M.; Kusic, H.; Stangar, U.L.; Fresno, F.; Dionysiou, D.D.; Bozic, A.L. Recent Achievements in Development of TiO2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting. Materials 2020, 13, 1338. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Shi, T.; Zhou, H. Hydrothermal Preparation of ZnO-Reduced Graphene Oxide Hybrid with High Performance in Photocatalytic Degradation. App. Surf. Sci. 2012, 258, 6204–6211. [Google Scholar] [CrossRef]
- Kuo, M.-Y.; Hsiao, C.-F.; Chiu, Y.-H.; Lai, T.-H.; Fang, M.-J.; Wu, J.-Y.; Chen, J.-W.; Wu, C.-L.; Wei, K.-H.; Lin, H.-C.; et al. Au@Cu2O Core@Shell Nanocrystals as Dual-Functional Catalysts for Sustainable Environmental Applications. Appl. Catal. B Environ. 2019, 242, 499–506. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Hsu, Y.-Y. Au@Cu7S4 Yolk @ Shell Nanocrystal-Decorated TiO2 Nanowires as an All-Day-Active Photocatalyst for Environmental Purification. Nano Energy 2017, 31, 286–295. [Google Scholar] [CrossRef]
- Sardar, S.; Kar, P.; Pal, S.K. The Impact of Central Metal Ions in Porphyrin Functionalized ZnO/TiO2 for Enhanced Solar Energy Conversion. J. Mater. Nanosci. 2014, 1, 12–30. [Google Scholar]
- Albay, C.; Koc, M.; Altin, I.; Bayrak, R.; Degirmencioglu, I.; Sokmen, M. New Dye Sensitized Photocatalyst: Copper (II) Phthalocyanine/TiO2 Nanocomposite for Water Remediation. J. Photochem. Photobiol. A Chem. 2016, 324, 117–125. [Google Scholar] [CrossRef]
- Cabir, B.; Yurderi, M.; Caner, N.; Agirtas, M.S.; Zahmakiran, M.; Kaya, M. Methylene Blue Photocatalytic Degradation under Visible Light Irradiation on Copper Phthalocyanine-Sensitized TiO2 Nanopowders. Mater. Sci. Eng. B 2017, 224, 9–17. [Google Scholar] [CrossRef]
- Vallejo, W.A.; Uribe, C.D.; Guzman, A.E.C. Methylene Blue Photocatalytic Degradation Under Visible Irradiation on TiO2 Thin films Sensitized with Cu and Zn Tetracaboxy-Phthalocyanines. J. Photochem. Photobiol. A Chem. 2015, 299, 80–86. [Google Scholar] [CrossRef]
- Li, M.; Hu, Q.; Shan, H.; Yu, W.; Xu, Z.-X. Fabrication of Copper Phthalocyanine/Reduced Graphene Oxide Nanocomposite for Efficient Reduction of Hexavalent Chromium. Chemosphere 2021, 263, 128250. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Pang, Y.; Lu, Q. In situ Growth of Copper (ii) Phthalocyanine-Sensitized Electrospun CeO2/Bi2MoO6 Nanofibres: A Highly Efficient Photoelectrocatalyst towards Degradation of Tetracyline. Inorg. Chem. Front. 2019, 6, 3215–3224. [Google Scholar] [CrossRef]
- Mun, S.J.; Park, S.-J. Graphitic Carbon Nitride Materials for Photocatalytic Hydrogen Production via Water Splitting: A Short Review. Catalysts 2019, 9, 805. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.L.; Chang, C.-J. Recent Progress on Metal Sulfide Composite Nanomaterials for Photocatalytic Hydrogen Production. Catalyst 2019, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Fang, M.-J.; Tsao, C.-W.; Hsu, Y.-J. Semiconductor Nanoheterostructures for Photoconversion Applications. J. Phys. D Appl. Phys. 2020, 53, 143001. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Y.; Heo, Y.-J.; Park, S.-J. Advanced Design and Synthesis of Composite Photocatalysts for the Remediation of Wastewater: A Review. Catalyst 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Devi, A.S.; Aswathy, V.V.; Sheena Mary, Y.; Panicker, C.Y.; Armakovic, S.J.; Ravindran, R.; van Alsenoy, C. Synthesis, XRD Crystal Structure Analysis, Vibrational Spectral Analysis, Molecular Dynamics and Molecular Docking Studies of 2-(3-methoxy-4-hydroxyphenyl) benzothiazole. J. Mol. Struct. 2017, 1148, 282–292. [Google Scholar] [CrossRef]
- Yılmaz, S.; Polat, I.; Atasoy, Y.; Bacaksız, E. Structural, Morphological, Optical and Electrical Evolution of Spray Deposited ZnO Rods Co-doped with Indium and Sulphur Atoms. J. Mater. Sci. Mater. Electron. 2014, 25, 1810–1816. [Google Scholar] [CrossRef]
- Chohan, S.; Booysen, I.N.; Mambanda, A. Cobalt b-tetra(3-oxyflavone/2-(2-oxyphenyl) benzoxazole) phthalocyanines and Their Carbon Nanotube Conjugates: Formation, Characterization and Dopamine Electrocatalysis. Polyhedron 2015, 102, 284–292. [Google Scholar] [CrossRef]
- Nas, A.; Kantekin, H.; Koca, A. Novel 4-(2-(benzo[d]thiazol-2-yl) phenoxy) Substituted Phthalocyanine Derivatives: Synthesis, Electrochemical and In-situ Spectroelectrochemical Characterization. J. Organomet. Chem. 2014, 757, 62–71. [Google Scholar] [CrossRef]
- Aktas, A.; Durmus, M.; Degirmencioglu, I. Self-assembly Novel Phthalocyanines Containing a Rigid Benzothiazole Skeleton With a 1,4-Benzene Linker: Synthesis, Spectroscopic and Spectral Properties, and Photochemical/Photophysical Affinity. Polyhedron 2012, 48, 80–91. [Google Scholar] [CrossRef]
- Elhalil, A.; Elmoubarki, R.; Farnane, M.; Machrouhi, A.; Sadiq, M.; Mahjoubi, F.Z.; Qourzal, S.; Barka, N. Photocatalytic Degradation of Caffeine as a Model Pharmaceutical Pollutant on Mg Doped ZnO-Al2O3 Heterostructure. Environ. Nanotechnol. Monit. Manag. 2018, 10, 63–72. [Google Scholar] [CrossRef]
- Mavric, T.; Valant, M.; Forster, M.; Cowman, A.J.; Lavrencic, U.; Emin, S. Design of Highly Photocatalytically Active ZnO/CuWO4 Nanocomposite. J. Colloid Interface Sci. 2016, 483, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Karkare, M.M. Choice of Precursor Not Affecting the Size of Anatase TiO2Nanoparticles but Affecting Morphology under Broader View. Int. Nano Lett. 2014, 4, 111. [Google Scholar] [CrossRef] [Green Version]
- Bespalko, Y.; Kuzenetsova, T.; Kriger, T.; Chesalov, Y.; Lapina, O.; Ishchenko, A.; Larina, T.; Sadykov, V.; Stathopoulos, V. La2Zr2O7/LaAlO3 Composite Prepared by Mixing Precipitated Precursors: Evolution of Its Structure under Sintering. Mater. Chem. Phys. 2020, 251, 123093. [Google Scholar] [CrossRef]
- Balakrishnan, M.; John, R. Properties of Sol-gel Synthesized Multiphase TiO2 (AB)-ZnO (ZW) Semiconductor Nanostructure: An Effective Catalyst for Methylene Blue Dye Degradation. Iran. J. Catal. 2020, 10, 1–16. [Google Scholar]
- Khan, M.I.; Bhatti, K.A.; Qindeel, R.; Bousiakuo, L.G.; Alonizan, N. Investigations of The Structural, Morphological and Electrical Properties of Multilayer ZnO/TiO2 Thin films Deposited by Sol-gel Technique. Results Phys. 2016, 6, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Shaogui, Y.; Xie, Q.; Xinyong, L.; Yazi, L.; Shuo, C.; Guohua, C. Preparation, Characterization and Photoelectrocatalytic Properties of Nanocrystalline Fe2O3/TiO2, ZnO/TiO2, Fe2O3/ZnO/TiO2 Composite Film Electrodes Towards Pentachlorophenol Degradation. Phys. Chem. Chem. Phys. 2004, 6, 659–664. [Google Scholar] [CrossRef]
- Wang, Z.; Helmerson, U.; Kall, P.-O. Optical Properties of Anatase TiO2 Thin Films Prepared by Aqueous Sol-Gel Process at Low Temperature. Thin Solid Films 2002, 405, 50–54. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, M.; Liu, Y.; Zheng, B.; Jiang, Q.; Lian, L. Structure and Photocatalysis of TiO2/ZnO Double -Layer Film Prepared by Pulsed Laser Deposition. Mater. Trans. 2012, 53, 463–468. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, G.K.; Rajput, J.K.; Pathak, T.K.; Kumar, V.; Purohit, L.P. Synthesis of ZnO: TiO2 Nanocomposites for Photocatalyst Application in Visible Light. Vacuum 2019, 160, 154–163. [Google Scholar] [CrossRef]
- Duran, N.E.; Capan, I. A Study on The Macrocycle Ring Size and R-group Chain Length on The Optical Properties of The CuPc Thin Films. Indian J. Phys. 2020, 94, 1061–1070. [Google Scholar] [CrossRef]
- Elgazzar, E. Improvement of the Efficiency of Al/CuPc/n-Si/Al Schottky Diode Based on Strong Light Absorption and High Photocarriers Response. Mater. Res. Express 2020, 7, 095102. [Google Scholar] [CrossRef]
- Mathew, S.; Prasad, A.K.; Benoy, T.; Rakesh, P.P.; Hari, M.; Radhakrishnan, P.; Nampoori, V.P.N.; Vallaban, C.P.G. UV-Visible Photoluminescence of TiO2 Nanoparticles Prepared by Hydrothermal Method. J. Fluoresc. 2012, 22, 1563–1569. [Google Scholar] [CrossRef]
- Cai, H.; Liang, P.; Hu, Z.; Shi, L.; Yang, X.; Sun, J.; Xu, N.; Wu, J. Enhanced Photoelectrochemical Activity of ZnO-Coated TiO2 Nanotubes and Its Dependence on ZnO Coating Thickness. Nanoscale Res. Lett. 2016, 11, 104. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, S.; McGlynn, E.; Bacaksiz, E.; Cullen, J.; Chellappan, R.K. Structural, Optical and Magnetic Properties of Ni Doped ZnO Micro-rods Grown by The Spray Pyrolysis Method. Chem. Phys. Lett. 2012, 525-526, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Cheng, Z.; Kang, L.; Li, M.; Gao, Z. The Facile Preparation of Ag Decorated TiO2/ZnO Nanotubes and Their Potent Photocatalytic Degradation Efficiency. RSC Adv. 2017, 7, 50064. [Google Scholar] [CrossRef] [Green Version]
- Pant, B.; Ojha, G.P.; Kuk, Y.-S.; Kwon, O.H.; Park, Y.W.; Park, W. Synthesis and Characterization of ZnO-TiO2/Carbon Fibre Composite with Enhanced Photocatalytic Properties. Nanomaterials 2020, 10, 1960. [Google Scholar] [CrossRef] [PubMed]
- Arriaga, F.M.; Palma, R.A.T.; Petrier, C.; Esplugas, S. Ultrasonic Treatment of Water Contaminated with Ibuprofen. Water Res. 2008, 42, 4243–4248. [Google Scholar] [CrossRef]
- Simsek, E.B.; Kilic, B.; Asgin, M.; Akan, A. Graphene Oxide Based Heterojunction TiO2-ZnO Catalyst with Outstanding Photocatalytic Performance for Bisphenol A, Ibuprofen, and Flurbiprofen. J. Ind. Eng. Chem. 2018, 59, 115–126. [Google Scholar] [CrossRef]
- Gongora, J.F.; Elizondo, P.; Ramirez, A.H. Photocatalytic Degradation of Ibuprofen Using TiO2 Sensitized by Ru (II) Polyaza Complexes. Photochem. Photobiol. Sci. 2017, 16, 31. [Google Scholar] [CrossRef]
- Guedid, H.; Reinert, L.; Leveque, J.-M.; Soneda, Y.; Bellakhal, N.; Duclaux, L. The Effects of The Surface Oxidation of Activated Carbon, The Solution pH and The Temperature on Adsorption of Ibuprofen. Carbon 2013, 54, 432–443. [Google Scholar] [CrossRef]
- Ma, H.-Y.; Zhao, L.; Guo, L.-H.; Zhang, H.; Chen, F.-J.; Yu, W.-C. Roles of Reactive Oxygen Species (ROS) in the Photocatalytic Degradation of Pentachlorophenol and Its Main Toxic Intermediates by TiO2/UV. J. Hazard. Mater. 2019, 369, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Rosman, N.; Salleh, W.N.W.; Aziz, F.; Ismail, A.F.; Harun, Z.; Bahri, S.S.; Nagai, K. Electrospun Nanofibres Embedding ZnO/Ag2CO3/Ag2O Heterojunction Photocatalyst with Enhanced Photocatalytic Activity. Catalyst 2019, 9, 565. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Shao, C.; Guo, Z.; Zhang, Z.; Mu, J.; Cao, T.; Liu, Y. Hierarchical Nanostructures of Copper (II) Phthalocyanine on Electrospun TiO2 Nanofibers: Controllable Solvothermal—Fabrication and Enhanced Visible Photocatalytic Properties. ACS Appl. Mater. Interfaces 2011, 3, 369–377. [Google Scholar] [CrossRef] [PubMed]
Element | Weight % | Atomic % |
OK | 15.40 | 42.62 |
TiK | 0.32 | 0.30 |
CuK | 0.60 | 0.42 |
ZnK | 83.67 | 56.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
BethelAnucha, C.; Altin, I.; Bacaksiz, E.; Degirmencioglu, I.; Kucukomeroglu, T.; Yılmaz, S.; Stathopoulos, V.N. Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation. Separations 2021, 8, 24. https://doi.org/10.3390/separations8030024
BethelAnucha C, Altin I, Bacaksiz E, Degirmencioglu I, Kucukomeroglu T, Yılmaz S, Stathopoulos VN. Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation. Separations. 2021; 8(3):24. https://doi.org/10.3390/separations8030024
Chicago/Turabian StyleBethelAnucha, Chukwuka, IIknur Altin, Emin Bacaksiz, Ismail Degirmencioglu, Tayfur Kucukomeroglu, Salih Yılmaz, and Vassilis N. Stathopoulos. 2021. "Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation" Separations 8, no. 3: 24. https://doi.org/10.3390/separations8030024
APA StyleBethelAnucha, C., Altin, I., Bacaksiz, E., Degirmencioglu, I., Kucukomeroglu, T., Yılmaz, S., & Stathopoulos, V. N. (2021). Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation. Separations, 8(3), 24. https://doi.org/10.3390/separations8030024