Increasing the Accuracy and Optimizing the Structure of the Scale Thickness Detection System by Extracting the Optimal Characteristics Using Wavelet Transform
Abstract
:1. Introduction
- Examining the wavelet transform’s properties and effectiveness in calculating scale thickness.
- Using a single detector lowers costs and the structure of the detecting system’s complexity.
- Increasing the precision of scale thickness determination by extracting useful features from received signals.
- Using the RBF neural network as a fast-learning network to calculate scale thickness.
2. Simulated Detection System
3. Discrete Wavelet Transform
4. RBF Neural Network
5. Result and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nazemi, E.; Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.; Zadeh, E.E.; Fatehi, A. Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrog. Energy 2016, 41, 7438–7444. [Google Scholar] [CrossRef]
- Roshani, M.; Giang, P.; Gholam, H.R.; Robert, H.; Behrooz, N.; Enrico, C.; Ehsan, N. Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows. Measurement 2021, 168, 108427. [Google Scholar] [CrossRef]
- Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H. Investigation of using 60Co source and one detector for determining the flow regime and void fraction in gas–liquid two-phase flows. Flow Meas. Instrum. 2016, 50, 73–79. [Google Scholar] [CrossRef]
- Roshani, G.H.; Karami, A.; Nazemi, E. An intelligent integrated approach of Jaya optimization algorithm and neuro-fuzzy network to model the stratified three-phase flow of gas–oil–water. Comput. Appl. Math. 2019, 38, 1–26. [Google Scholar] [CrossRef]
- Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [Google Scholar] [CrossRef]
- Sattari, M.A.; Roshani, G.H.; Hanus, R. Improving the structure of two-phase flow meter using feature extraction and GMDH neural network. Radiat. Phys. Chem. 2020, 171, 108725. [Google Scholar] [CrossRef]
- Alamoudi, M.; Sattari, M.A.; Balubaid, M.; Eftekhari-Zadeh, E.; Nazemi, E.; Taylan, O.; Kalmoun, E.M. Application of Gamma Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different Flow Regimes and Void Fractions Exist. Symmetry 2021, 13, 1198. [Google Scholar] [CrossRef]
- Taylan, O.; Abusurrah, M.; Amiri, S.; Nazemi, E.; Eftekhari-Zadeh, E.; Roshani, G.H. Proposing an Intelligent Dual-Energy Radiation-Based System for Metering Scale Layer Thickness in Oil Pipelines Containing an Annular Regime of Three-Phase Flow. Mathematics 2021, 9, 2391. [Google Scholar] [CrossRef]
- Basahel, A.; Sattari, M.A.; Taylan, O.; Nazemi, E. Application of Feature Extraction and Artificial Intelligence Techniques for Increasing the Accuracy of X-ray Radiation Based Two Phase Flow Meter. Mathematics 2021, 9, 1227. [Google Scholar] [CrossRef]
- Taylan, O.; Sattari, M.A.; Essoussi, I.E.; Nazemi, E. Frequency Domain Feature Extraction Investigation to Increase the Accuracy of an Intelligent Nondestructive System for Volume Fraction and Regime Determination of Gas-Water-Oil Three-Phase Flows. Mathematics 2021, 9, 2091. [Google Scholar] [CrossRef]
- Roshani, G.H.; Ali, P.J.M.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Sattari, M.A.; Amiri, S.; Nazemi, E.; Eftekhari-Zadeh, E.; et al. Simulation Study of Utilizing X-ray Tube in Monitoring Systems of Liquid Petroleum Products. Processes 2021, 9, 828. [Google Scholar] [CrossRef]
- Balubaid, M.; Sattari, M.A.; Taylan, O.; Bakhsh, A.A.; Nazemi, E. Applications of discrete wavelet transform for feature extraction to increase the accuracy of monitoring systems of liquid petroleum products. Mathematics 2021, 9, 3215. [Google Scholar] [CrossRef]
- Mayet, A.M.; Chen, T.-C.; Alizadeh, S.M.; Al-Qahtani, A.A.; Alanazi, A.K.; Ghamry, N.A.; Alhashim, H.H.; Eftekhari-Zadeh, E. Optimizing the gamma ray-based detection system to measure the scale thickness in three-phase flow through oil and petrochemical pipelines in view of stratified regime. Processes 2022, 10, 1866. [Google Scholar] [CrossRef]
- Mayet, A.M.; Chen, T.-C.; Ahmad, I.; Tag Eldin, E.; Al-Qahtani, A.A.; Narozhnyy, I.M.; Guerrero, J.W.G.; Alhashim, H.H. Application of neural network and dual-energy radiation-based detection techniques to measure scale layer thickness in oil pipelines containing a stratified regime of three-phase flow. Mathematics 2022, 10, 3544. [Google Scholar] [CrossRef]
- Pelowitz, D.B. MCNP-X TM User’s Manual, Version 2.5.0; LA-CP-05e0369; Los Alamos National Laboratory: Los Alamos, NM, USA, 2005. [Google Scholar]
- Hosseini, S.; Taylan, O.; Abusurrah, M.; Akilan, T.; Nazemi, E.; Eftekhari-Zadeh, E.; Bano, F.; Roshani, G.H. Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries. Polymers 2021, 13, 3647. [Google Scholar] [CrossRef]
- Sattari, M.A.; Korani, N.; Hanus, R.; Roshani, G.H.; Nazemi, E. Improving the performance of gamma radiation based two phase flow meters using optimal time characteristics of the detector output signal extraction. J. Nucl. Sci. Technol. 2020, 41, 42–54. [Google Scholar]
- Iliyasu, A.M.; Mayet, A.M.; Hanus, R.; El-Latif, A.A.A.; Salama, A.S. Abd El-Latif, and Ahmed, S. Salama. Employing GMDH-Type Neural Network and Signal Frequency Feature Extraction Approaches for Detection of Scale Thickness inside Oil Pipelines. Energies 2022, 15, 4500. [Google Scholar] [CrossRef]
- Mayet, A.M.; Salama, A.S.; Alizadeh, S.M.; Nesic, S.; Guerrero, J.W.G.; Eftekhari-Zadeh, E.; Nazemi, E.; Iliyasu, A.M. Applying data mining and artificial intelligence techniques for high precision measuring of the two-phase flow’s characteristics independent of the pipe’s scale layer. Electronics 2022, 11, 459. [Google Scholar] [CrossRef]
- Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005. [Google Scholar] [CrossRef] [Green Version]
- Soltani, S. On the use of the wavelet decomposition for time series prediction. Neurocomputing 2002, 48, 267–277. [Google Scholar] [CrossRef]
- Eftekhari-Zadeh, E.; Bensalama, A.S.; Roshani, G.H.; Salama, A.S.; Spielmann, C.; Iliyasu, A.M. Enhanced Gamma-Ray Attenuation-Based Detection System Using an Artificial Neural Network. Photonics 2022, 9, 382. [Google Scholar] [CrossRef]
- Mayet, A.M.; Alizadeh, S.M.; Kakarash, Z.A.; Al-Qahtani, A.A.; Alanazi, A.K.; Alhashimi, H.H.; Eftekhari-Zadeh, E.; Nazemi, E. Introducing a Precise System for Determining Volume Percentages Independent of Scale Thickness and Type of Flow Regime. Mathematics 2022, 10, 1770. [Google Scholar] [CrossRef]
- Hartman, E.J.; Keeler, J.D.; Kowalski, J.M. Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput. 1990, 2, 210–215. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.M.; Alibakhshikenari, M.; Koziel, S. Design of a compact planar transmission line for miniaturized rat-race coupler with harmonics suppression. IEEE Access 2021, 9, 129207–129217. [Google Scholar] [CrossRef]
- Hookari, M.; Roshani, S.; Roshani, S. High-efficiency balanced power amplifier using miniaturized harmonics suppressed coupler. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22252. [Google Scholar] [CrossRef]
- Lotfi, S.; Roshani, S.; Roshani, S.; Gilan, M.S. Wilkinson power divider with band-pass filtering response and harmonics suppression using open and short stubs. Frequenz 2020, 74, 169–176. [Google Scholar] [CrossRef]
- Jamshidi, M.; Siahkamari, H.; Roshani, S.; Roshani, S. A compact Gysel power divider design using U-shaped and T-shaped resonators with harmonics suppression. Electromagnetics 2019, 39, 491–504. [Google Scholar] [CrossRef]
- Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and modeling of a compact power divider with squared resonators using artificial intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [Google Scholar] [CrossRef]
- Roshani, S.; Azizian, J.; Roshani, S.; Jamshidi, M.B.; Parandin, F. Design of a miniaturized branch line microstrip coupler with a simple structure using artificial neural network. Frequenz 2022, 76, 255–263. [Google Scholar] [CrossRef]
- Khaleghi, M.; Salimi, J.; Farhangi, V.; Moradi, M.J.; Karakouzian, M. Application of artificial neural network to predict load bearing capacity and stiffness of perforated masonry walls. CivilEng 2021, 2, 48–67. [Google Scholar] [CrossRef]
- Dabiri, H.; Farhangi, V.; Moradi, M.J.; Zadehmohamad, M.; Karakouzian, M. Applications of Decision Tree and Random Forest as Tree-Based Machine Learning Techniques for Analyzing the Ultimate Strain of Spliced and Non-Spliced Reinforcement Bars. Appl. Sci. 2022, 12, 4851. [Google Scholar] [CrossRef]
- Zych, M.; Petryka, L.; Kępiński, J.; Hanus, R.; Bujak, T.; Puskarczyk, E. Radioisotope investigations of compound two-phase flows in an open channel. Flow Meas. Instrum. 2014, 35, 11–15. [Google Scholar] [CrossRef]
- Zych, M.; Hanus, R.; Wilk, B.; Petryka, L.; Świsulski, D. Comparison of noise reduction methods in radiometric correlation measurements of two-phase liquid-gas flows. Measurement 2018, 129, 288–295. [Google Scholar] [CrossRef]
- Golijanek-Jędrzejczyk, A.; Mrowiec, A.; Hanus, R.; Zych, M.; Świsulski, D. Uncertainty of mass flow measurement using centric and eccentric orifice for Reynolds number in the range 10,000 ≤ Re ≤ 20,000. Measurement 2020, 160, 107851. [Google Scholar] [CrossRef]
- Alanazi, A.K.; Alizadeh, S.M.; Nurgalieva, K.S.; Nesic, S.; Grimaldo Guerrero, J.W.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Nazemi, E.; Narozhnyy, I.M. Application of Neural Network and Time-Domain Feature Extraction Techniques for Determining Volumetric Percentages and the Type of Two Phase Flow Regimes Independent of Scale Layer Thickness. Appl. Sci. 2022, 12, 1336. [Google Scholar] [CrossRef]
- Mayet, A.M.; Hussain, A.M.; Hussain, M.M. Three-terminal nanoelectromechanical switch based on tungsten nitride—An amorphous metallic material. Nanotechnology 2015, 27, 035202. [Google Scholar] [CrossRef]
- Shukla, N.K.; Mayet, A.M.; Vats, A.; Aggarwal, M.; Raja, R.K.; Verma, R.; Muqeet, M.A. High speed integrated RF–VLC data communication system: Performance constraints and capacity considerations. Phys. Commun. 2022, 50, 101492. [Google Scholar] [CrossRef]
- Mayet, A.; Smith, C.E.; Hussain, M.M. Energy reversible switching from amorphous metal based nanoelectromechanical switch. In Proceedings of the 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), Beijing, China, 5–8 August 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 366–369. [Google Scholar]
- Khaibullina, K. Technology to remove asphaltene, resin and paraffin deposits in wells using organic solvents. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, United Arab Emirates, 26–28 September 2016; Available online: https://onepetro.org (accessed on 21 September 2022). [CrossRef]
- Tikhomirova, E.A.; Sagirova, L.R.; Khaibullina, K.S. A review on methods of oil saturation modelling using IRAP RMS. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 378, p. 012075. [Google Scholar]
- Khaibullina, K.S.; Korobov, G.Y.; Lekomtsev, A.V. Development of an asphalt-resin-paraffin deposits inhibitor and substantiation of the technological parameters of its injection into the bottom-hole formation zone. Period. Tche Quim. 2022, 17, 769–781. [Google Scholar] [CrossRef]
- Khaibullina, K.S.; Sagirova, L.R.; Sandyga, M.S. Substantiation and selection of an inhibitor for preventing the formation of asphalt-resin-paraffin deposits. Period. Tche Quim. 2020, 17, 541–551. [Google Scholar] [CrossRef]
- Mayet, A.M.; Alizadeh, S.M.; Nurgalieva, K.S.; Hanus, R.; Nazemi, E.; Narozhnyy, I.M. Extraction of Time-Domain Characteristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems. Energies 2022, 15, 1986. [Google Scholar] [CrossRef]
- Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum. 2020, 75, 101804. [Google Scholar] [CrossRef]
- Hosseini, S.; Roshani, G.H.; Setayeshi, S. Precise gamma based two-phase flow meter using frequency feature extraction and only one detector. Flow Meas. Instrum. 2020, 72, 101693. [Google Scholar] [CrossRef]
- Roshani, M.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Phan, N.H.; Tran, H.O.; Nazemi, E. X-ray tube with artificial neural network model as a promising alternative for radioisotope source in radiation based two phase flowmeters. Appl. Radiat. Isot. 2020, 164, 109255. [Google Scholar] [CrossRef] [PubMed]
- Gholipour Peyvandi, R.; Islami Rad, S.Z. Application of artificial neural networks for the prediction of volume fraction using spectra of gamma rays backscattered by three-phase flows. Eur. Phys. J. Plus 2017, 132, 1–8. [Google Scholar] [CrossRef]
- Roshani Gholam, H.; Ehsan, N.; Farzin, S.; Mohammad, A.I.; Salar, M. Designing a simple radiometric system to predict void fraction percentage independent of flow pattern using radial basis function. Metrol. Meas. Syst. 2018, 25, 2. [Google Scholar]
- Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H.; Setayeshi, S. Flow regime identification and void fraction prediction in two-phase flows based on gamma ray attenuation. Measurement 2015, 62, 25–32. [Google Scholar] [CrossRef]
Train Targets | Train Outputs | Test Targets | Test Outputs | |
---|---|---|---|---|
1 | 3.0000 | 2.8507 | 1.5000 | 1.5502 |
2 | 2.5000 | 2.6358 | 0 | 0.0084 |
3 | 2.0000 | 1.9591 | 1.0000 | 1.2299 |
4 | 2.5000 | 2.6328 | 2.5000 | 2.6055 |
5 | 0 | 0.0246 | 1.5000 | 1.4134 |
6 | 2.5000 | 2.6908 | 2.0000 | 2.1296 |
7 | 0.5000 | 0.5317 | 1.0000 | 0.8584 |
8 | 1.0000 | 0.9959 | 2.0000 | 2.2414 |
9 | 0.5000 | 0.5000 | 2.5000 | 2.6178 |
10 | 3.0000 | 2.9519 | 1.5000 | 1.7279 |
11 | 2.0000 | 2.2706 | 3.0000 | 2.8875 |
12 | 3.0000 | 2.9778 | 0.5000 | 0.5834 |
13 | 2.5000 | 2.3107 | 1.0000 | 0.8300 |
14 | 1.0000 | 1.2258 | 2.5000 | 2.5796 |
15 | 0.5000 | 0.5077 | 3.0000 | 2.8871 |
16 | 0 | 0.0522 | 0.5000 | 0.6381 |
17 | 1.0000 | 0.7109 | 2.0000 | 2.2191 |
18 | 2.5000 | 2.3532 | 0.5000 | 0.5247 |
19 | 0 | 0.0231 | 1.5000 | 1.2896 |
20 | 3.0000 | 3.0335 | 0.5000 | 0.6990 |
21 | 0 | 0.0752 | 1.0000 | 1.2803 |
22 | 2.0000 | 2.3439 | 3.0000 | 2.9794 |
23 | 2.5000 | 2.7286 | 0.5000 | 0.5555 |
24 | 1.5000 | 1.5813 | 2.5000 | 2.4208 |
25 | 3.0000 | 2.8800 | 0 | 0.0852 |
26 | 3.0000 | 2.9935 | 1.5000 | 1.5737 |
27 | 1.0000 | 0.8766 | 2.5000 | 2.4476 |
28 | 2.5000 | 2.4182 | 0.5000 | 0.5218 |
29 | 1.0000 | 1.1707 | 3.0000 | 2.8760 |
30 | 3.0000 | 3.0492 | 1.0000 | 1.2615 |
31 | 0.5000 | 0.5551 | 2.5000 | 2.5231 |
32 | 0 | −0.1112 | 0.5000 | 0.5853 |
33 | 1.0000 | 0.9888 | 2.0000 | 1.8922 |
34 | 1.5000 | 1.6268 | 1.5000 | 1.4737 |
35 | 3.0000 | 3.0185 | 1.0000 | 0.8781 |
36 | 1.0000 | 1.2172 | 0 | −0.1686 |
37 | 3.0000 | 2.9045 | 2.5000 | 2.8822 |
38 | 2.0000 | 2.2647 | 0 | −0.0797 |
39 | 0 | −0.0343 | 0 | −0.2528 |
40 | 2.0000 | 2.0162 | 2.5000 | 2.8470 |
41 | 0 | 0.0399 | 2.5000 | 2.3918 |
42 | 2.0000 | 2.3730 | 0 | 0.0240 |
43 | 0.5000 | 0.6606 | 1.5000 | 1.3381 |
44 | 0 | −0.1847 | 0.5000 | 0.6577 |
45 | 0 | 0.1900 | 2.5000 | 2.7493 |
46 | 0 | 0.0007 | 1.5000 | 1.7535 |
47 | 1.5000 | 1.5749 | 2.0000 | 1.8070 |
48 | 3.0000 | 2.8047 | 2.0000 | 2.3398 |
49 | 0.5000 | 0.4150 | 2.0000 | 2.0685 |
50 | 0 | 0.1194 | 2.5000 | 2.7588 |
51 | 2.5000 | 2.5892 | 1.5000 | 1.6536 |
52 | 2.5000 | 2.6717 | 0.5000 | 0.6614 |
53 | 3.0000 | 2.8893 | 1.0000 | 0.8097 |
54 | 0 | −0.0654 | 1.5000 | 1.2968 |
55 | 1.5000 | 1.4104 | 0 | −0.1245 |
56 | 0 | 0.0571 | 1.0000 | 0.9329 |
57 | 1.0000 | 0.7580 | 0 | −0.0362 |
58 | 2.0000 | 2.3764 | 3.0000 | 2.8228 |
59 | 0 | 0.0156 | 1.0000 | 1.0669 |
60 | 3.0000 | 2.7795 | 2.0000 | 1.8055 |
61 | 3.0000 | 3.0747 | 2.5000 | 2.6317 |
62 | 3.0000 | 3.0070 | 0.5000 | 0.5188 |
63 | 1.0000 | 1.2388 | 1.5000 | 1.4472 |
64 | 3.0000 | 3.0872 | 0.5000 | 0.6452 |
65 | 2.5000 | 2.4517 | 1.5000 | 1.5560 |
66 | 2.0000 | 1.8413 | 2.0000 | 1.7887 |
67 | 3.0000 | 2.9910 | 1.0000 | 1.0048 |
68 | 0.5000 | 0.4394 | 1.0000 | 1.2338 |
69 | 0 | −0.0480 | 0.5000 | 0.6543 |
70 | 1.5000 | 1.4888 | 1.0000 | 0.8751 |
71 | 2.5000 | 2.5288 | 0 | −0.1118 |
72 | 2.0000 | 2.0434 | 1.0000 | 1.0108 |
73 | 1.5000 | 1.3414 | 2.0000 | 1.9147 |
74 | 3.0000 | 2.8135 | 0.5000 | 0.5529 |
75 | 0.5000 | 0.4246 | 2.0000 | 1.8891 |
76 | 0.5000 | 0.5672 | 2.0000 | 2.3440 |
77 | 0.5000 | 0.6651 | ||
78 | 2.5000 | 2.4111 | ||
79 | 2.0000 | 1.9201 | ||
80 | 0.5000 | 0.4180 | ||
81 | 1.5000 | 1.7401 | ||
82 | 0 | 0.1030 | ||
83 | 2.0000 | 2.3196 | ||
84 | 1.0000 | 0.8052 | ||
85 | 2.5000 | 2.7879 | ||
86 | 2.0000 | 1.8781 | ||
87 | 0.5000 | 0.5666 | ||
88 | 1.5000 | 1.5677 | ||
89 | 1.0000 | 1.1954 | ||
90 | 2.5000 | 2.3980 | ||
91 | 2.0000 | 2.3241 | ||
92 | 1.5000 | 1.2039 | ||
93 | 0.5000 | 0.6220 | ||
94 | 2.5000 | 2.5530 | ||
95 | 0 | −0.0323 | ||
96 | 2.5000 | 2.4175 | ||
97 | 0.5000 | 0.3938 | ||
98 | 1.0000 | 1.0718 | ||
99 | 1.0000 | 0.7100 | ||
100 | 0.5000 | 0.6053 | ||
101 | 0 | 0.0484 | ||
102 | 0.5000 | 0.6160 | ||
103 | 2.5000 | 2.3416 | ||
104 | 2.0000 | 1.8580 | ||
105 | 1.5000 | 1.6659 | ||
106 | 3.0000 | 2.9056 | ||
107 | 2.5000 | 2.3207 | ||
108 | 2.0000 | 2.0069 | ||
109 | 2.5000 | 2.3241 | ||
110 | 0.5000 | 0.5279 | ||
111 | 1.5000 | 1.6442 | ||
112 | 1.0000 | 1.0299 | ||
113 | 0 | 0.0031 | ||
114 | 0 | 0.0226 | ||
115 | 0 | −0.0417 | ||
116 | 3.0000 | 2.9503 | ||
117 | 0.5000 | 0.6860 | ||
118 | 1.5000 | 1.7487 | ||
119 | 2.0000 | 1.8221 | ||
120 | 1.0000 | 0.9477 | ||
121 | 1.0000 | 1.1897 | ||
122 | 2.0000 | 1.9254 | ||
123 | 1.5000 | 1.2626 | ||
124 | 2.0000 | 2.2340 | ||
125 | 1.5000 | 1.2649 | ||
126 | 3.0000 | 2.9737 | ||
127 | 2.0000 | 1.7831 | ||
128 | 0 | −0.0127 | ||
129 | 0.5000 | 0.6844 | ||
130 | 2.5000 | 2.6940 | ||
131 | 2.5000 | 2.4228 | ||
132 | 3.0000 | 2.8849 | ||
133 | 3.0000 | 2.7392 | ||
134 | 2.5000 | 2.3055 | ||
135 | 2.0000 | 2.2171 | ||
136 | 3.0000 | 2.8540 | ||
137 | 1.0000 | 0.8989 | ||
138 | 0 | −0.1658 | ||
139 | 1.5000 | 1.6764 | ||
140 | 1.5000 | 1.6445 | ||
141 | 3.0000 | 2.8768 | ||
142 | 0.5000 | 0.5343 | ||
143 | 1.0000 | 0.9241 | ||
144 | 1.5000 | 1.5487 | ||
145 | 1.5000 | 1.3810 | ||
146 | 3.0000 | 2.9438 | ||
147 | 3.0000 | 3.0738 | ||
148 | 1.0000 | 1.3264 | ||
149 | 0.5000 | 0.5668 | ||
150 | 1.5000 | 1.7114 | ||
151 | 2.0000 | 2.1932 | ||
152 | 2.5000 | 2.4678 | ||
153 | 0.5000 | 0.6429 | ||
154 | 1.5000 | 1.7403 | ||
155 | 1.0000 | 1.2559 | ||
156 | 2.0000 | 1.8254 | ||
157 | 0 | −0.0976 | ||
158 | 3.0000 | 2.8746 | ||
159 | 1.0000 | 0.9637 | ||
160 | 3.0000 | 3.0812 | ||
161 | 3.0000 | 2.9221 | ||
162 | 1.0000 | 1.2994 | ||
163 | 3.0000 | 2.8575 | ||
164 | 0 | 0.0467 | ||
165 | 1.5000 | 1.7537 | ||
166 | 1.5000 | 1.2195 | ||
167 | 2.5000 | 2.7950 | ||
168 | 1.5000 | 1.5556 | ||
169 | 2.0000 | 1.7226 | ||
170 | 3.0000 | 3.0435 | ||
171 | 0.5000 | 0.4247 | ||
172 | 2.0000 | 1.6679 | ||
173 | 0 | 0.0561 | ||
174 | 1.5000 | 1.7550 | ||
175 | 1.0000 | 1.0100 | ||
176 | 0 | −0.0189 |
Ref | Number of Detectors | Extracted Features | Source Type | Type of Neural Network | Maximum MSE | Maximum RMSE |
---|---|---|---|---|---|---|
[6] | 1 | Time features | 137Cs | GMDH | 1.24 | 1.11 |
[5] | 2 | Time features | 137Cs | MLP | 0.21 | 0.46 |
[45] | 1 | No feature extraction | 60Co | GMDH | 7.34 | 2.71 |
[46] | 2 | Frequency features | 137Cs | MLP | 0.67 | 0.82 |
[47] | 1 | No feature extraction | X-Ray tube | MLP | 17.05 | 4.13 |
[48] | 1 | No feature extraction | 137Cs | MLP | 2.56 | 1.6 |
[49] | 1 | Compton continuum and counts under full energy peaks of 1173 and 1333 keV | 60Co | RBF | 37.45 | 6.12 |
[50] | 2 | full energy peak (transmission count), photon counts of Compton edge in transmission detector, and total count in the scattering detector | 137Cs | MLP | 1.08 | 1.04 |
[current study] | 1 | Wavelet features | Dual-energy gamma source | RBF | 0.02 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayet, A.M.; Chen, T.-C.; Alizadeh, S.M.; Al-Qahtani, A.A.; Qaisi, R.M.A.; Alhashim, H.H.; Eftekhari-Zadeh, E. Increasing the Accuracy and Optimizing the Structure of the Scale Thickness Detection System by Extracting the Optimal Characteristics Using Wavelet Transform. Separations 2022, 9, 288. https://doi.org/10.3390/separations9100288
Mayet AM, Chen T-C, Alizadeh SM, Al-Qahtani AA, Qaisi RMA, Alhashim HH, Eftekhari-Zadeh E. Increasing the Accuracy and Optimizing the Structure of the Scale Thickness Detection System by Extracting the Optimal Characteristics Using Wavelet Transform. Separations. 2022; 9(10):288. https://doi.org/10.3390/separations9100288
Chicago/Turabian StyleMayet, Abdulilah Mohammad, Tzu-Chia Chen, Seyed Mehdi Alizadeh, Ali Awadh Al-Qahtani, Ramy Mohammed Aiesh Qaisi, Hala H. Alhashim, and Ehsan Eftekhari-Zadeh. 2022. "Increasing the Accuracy and Optimizing the Structure of the Scale Thickness Detection System by Extracting the Optimal Characteristics Using Wavelet Transform" Separations 9, no. 10: 288. https://doi.org/10.3390/separations9100288
APA StyleMayet, A. M., Chen, T. -C., Alizadeh, S. M., Al-Qahtani, A. A., Qaisi, R. M. A., Alhashim, H. H., & Eftekhari-Zadeh, E. (2022). Increasing the Accuracy and Optimizing the Structure of the Scale Thickness Detection System by Extracting the Optimal Characteristics Using Wavelet Transform. Separations, 9(10), 288. https://doi.org/10.3390/separations9100288