Purification Technologies for NOx Removal from Flue Gas: A Review
Abstract
:1. Introduction
2. Oxidation Methods
2.1. Gas Oxidants
2.1.1. Oxygen (O2) Oxidants
2.1.2. Ozone (O3) Oxidants
2.1.3. Chlorine (Cl2) and Chlorine Dioxide (ClO2) Oxidants
2.1.4. Non-Thermal Plasma (NTP)
2.2. Liquid Oxidants
2.2.1. H2O2 Oxidants
- (1)
- Oxygen radical generation (Fenton reaction):
- (2)
- Oxidation by •OH
2.2.2. Peroxydisulfate/Peroxymonosulfate (PS/PMS) Oxidants
2.2.3. NaClO/ NaClO2 Oxidants
3. Reduction Methods
3.1. Gas Reductants
3.1.1. NH3 and Urea(CO(NH2)2) Reductants
3.1.2. H2 Reductants
3.1.3. HC Reductants
3.1.4. CO Reductants
3.2. Liquid Reductants
3.3. Solid Reductants
4. Absorption/Adsorption Methods
4.1. Liquid Absorbents
4.1.1. Alkaline Solution
4.1.2. Complex Absorbents
4.2. Solid Adsorbents
4.2.1. Activated Carbons (AC)
4.2.2. Zeolites
4.2.3. Metal-Organic Frameworks (MOFs)
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.-M.; Zhang, N.; Guo, X.; Dou, M.-Y.; Feng, Q.; Zou, S.; Huang, F.-C. Summary of Flue Gas Purification and Treatment Technology for Domestic Waste Incineration. IOP Conf. Ser. Earth Environ. Sci. 2020, 508, 012016. [Google Scholar] [CrossRef]
- Lin, F.; Wang, Z.; Zhang, Z.; He, Y.; Zhu, Y.; Shao, J.; Yuan, D.; Chen, G.; Cen, K. Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury. Chem. Eng. J. 2020, 382, 123030. [Google Scholar] [CrossRef]
- Shan, W.; Yu, Y.; Zhang, Y.; He, G.; Peng, Y.; Li, J.; He, H. Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NOx with NH3. Catal. Today 2021, 376, 292–301. [Google Scholar] [CrossRef]
- Yuan, B.; Mao, X.Z.; Wang, Z.; Hao, R.L.; Zhao, Y. Radical-induced oxidation removal of multi-air-pollutant: A critical review. J. Hazard. Mater. 2020, 383, 121162. [Google Scholar] [CrossRef] [PubMed]
- Gholami, F.; Tomas, M.; Gholami, Z.; Vakili, M. Technologies for the nitrogen oxides reduction from flue gas: A review. Sci. Total Environ. 2020, 714, 136712. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Changjian, L.; Haibo, W.; Ping, J.; Zhiyu, L.; Fanfei, M. Research progress of low-NOx combustion technology for boilers. Clean Coal Technol. 2022, 28, 99–114. [Google Scholar] [CrossRef]
- Skalska, K.; Miller, J.S.; Ledakowicz, S. Trends in NOx abatement: A review. Sci. Total Environ. 2010, 408, 3976–3989. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zwolińska, E.; Chmielewski, A.G. Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 119–142. [Google Scholar] [CrossRef]
- Javed, M.T.; Irfan, N.; Gibbs, B.M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manag. 2007, 83, 251–289. [Google Scholar] [CrossRef]
- Guo, R.-T.; Hao, J.-K.; Pan, W.-G.; Yu, Y.-L. Liquid Phase Oxidation and Absorption of NO from Flue Gas: A Review. Sep. Sci. Technol. 2015, 50, 310–321. [Google Scholar] [CrossRef]
- Rezaei, F.; Rownaghi, A.A.; Monjezi, S.; Lively, R.P.; Jones, C.W. SOx/NOx Removal from Flue Gas Streams by Solid Adsorbents: A Review of Current Challenges and Future Directions. Energy Fuels 2015, 29, 5467–5486. [Google Scholar] [CrossRef]
- Ma, S.; Zhao, Y.; Yang, J.; Zhang, S.; Zhang, J.; Zheng, C. Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma. Renew. Sustain. Energy Rev. 2017, 67, 791–810. [Google Scholar] [CrossRef]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 2004, 4, 1461–1738. [Google Scholar] [CrossRef] [Green Version]
- Shugen, L.; Binh, N.; Ting, L. Production and Control of NOx in Sintering or Pelletizing Process. Sichuan Environ. 2016, 35, 17–22. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew. Sustain. Energy Rev. 2014, 31, 121–132. [Google Scholar] [CrossRef]
- Fang, P.; Tang, Z.; Xiao, X.; Huang, J.; Chen, X.; Zhong, P.; Tang, Z.; Cen, C. Using sewage sludge as a flue gas denitration agent for the cement industry: Factor assessment and feasibility. J. Clean. Prod. 2019, 224, 292–303. [Google Scholar] [CrossRef]
- Gershinowitz, H.; Eyring, H. The Theory of Trimolecular Reactions1. J. Am. Chem. Soc. 1935, 57, 985–991. [Google Scholar] [CrossRef]
- Liang, J.; Lu, L.; Liu, L. Study on Pollutant Quantity of Low Calorific-value Gas Power Plant. Sci. Technol. Eng. 2013, 13, 9587–9591. [Google Scholar]
- Cai, S. Exploring technical ways to reduce NOx emissions from cement kilns in China. In Proceedings of the Second Summit Forum on Energy Saving, Emission Reduction and Cleaner Production Control Technology in Cement Industry—Special Session on Denitrification and Dust Removal Technology in Cement Industry, Jinan, China, 16–18 April 2013; pp. 36–39. [Google Scholar]
- Tsukahara, H.; Ishida, T.; Mayumi, M. Gas-Phase Oxidation of Nitric Oxide: Chemical Kinetics and Rate Constant. Nitric Oxide 1999, 3, 191–198. [Google Scholar] [CrossRef]
- Ting, T.; Stanger, R.; Wall, T. Laboratory investigation of high pressure NO oxidation to NO2 and capture with liquid and gaseous water under oxy-fuel CO2 compression conditions. Int. J. Greenh. Gas Control 2013, 18, 15–22. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Lyu, Y.-K. High catalytic activity of Mn-based catalyst in NO oxidation at low temperature and over a wide temperature span. Mol. Catal. 2018, 454, 21–29. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Lv, Y.-K. Catalytic oxidation of NO over MnO2 with different crystal structures. RSC Adv. 2016, 6, 54032–54040. [Google Scholar] [CrossRef]
- Gao, F.; Tang, X.; Yi, H.; Chu, C.; Li, N.; Li, J.; Zhao, S. In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts. Chem. Eng. J. 2017, 322, 525–537. [Google Scholar] [CrossRef]
- Hadjiivanov, K.; Knozinger, H. Species formed after NO adsorption and NO+O-2 co-adsorption on TiO2: An FTIR spectroscopic study. Phys. Chem. Chem. Phys. 2000, 2, 2803–2806. [Google Scholar] [CrossRef]
- Yuan, H.; Chen, J.; Guo, Y.; Wang, H.; Hu, P. Insight into the Superior Catalytic Activity of MnO2 for Low-Content NO Oxidation at Room Temperature. J. Phys. Chem. C 2018, 122, 25365–25373. [Google Scholar] [CrossRef]
- Bhatia, D.; McCabe, R.W.; Harold, M.P.; Balakotaiah, V. Experimental and kinetic study of NO oxidation on model Pt catalysts. J. Catal. 2009, 266, 106–119. [Google Scholar] [CrossRef]
- Tang, N.; Liu, Y.; Wang, H.; Wu, Z. Mechanism Study of NO Catalytic Oxidation over MnOx/TiO2 Catalysts. J. Phys. Chem. C 2011, 115, 8214–8220. [Google Scholar] [CrossRef]
- Sun, W.-y.; Wang, Q.-y.; Ding, S.-l.; Su, S.-j. Simultaneous absorption of SO2 and NOx with pyrolusite slurry combined with gas-phase oxidation of NO using ozone: Effect of molar ratio of O2/(SO2+0.5NOx) in flue gas. Chem. Eng. J. 2013, 228, 700–707. [Google Scholar] [CrossRef]
- Mok, Y.S.; Lee, H.-J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption–reduction technique. Fuel Processing Technol. 2006, 87, 591–597. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, N.; Zhuang, Z.; Wang, H.; Liu, Y.; Weng, X.; Wu, Z. Mechanisms and reaction pathways for simultaneous oxidation of NOx and SO2 by ozone determined by in situ IR measurements. J. Hazard. Mater. 2014, 274, 376–383. [Google Scholar] [CrossRef]
- Li, B.; Zhao, J.; Lu, J. Numerical Study of the Simultaneous Oxidation of NO and SO2 by Ozone. Int. J. Environ. Res. Public Health 2015, 12, 1595–1611. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhuang, Z.; Sun, C.; Zhao, N.; Liu, Y.; Wu, Z. Numerical evaluation of the effectiveness of NO2 and N2O5 generation during the NO ozonation process. J. Environ. Sci. 2016, 41, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Liu, X.; Zhu, T.; Tian, M.; Cai, M.; Zhao, Z.; Wu, H. Simultaneous Removal of NOx and SO2 by MgO Combined with O-3 Oxidation: The Influencing Factors and O-3 Consumption Distributions. ACS Omega 2019, 4, 21091–21099. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Zhou, J.; Feng, Y.; Zhu, Y. Marine Emission Pollution Abatement Using Ozone Oxidation by a Wet Scrubbing Method. Ind. Eng. Chem. Res. 2016, 55, 5825–5831. [Google Scholar] [CrossRef]
- Li, Z.; Wuebbles, R.D.; Pylawka, N.J. Rate constant measurement for the reaction of OClO with NO at 220–367 K. Chem. Phys. Lett. 2002, 354, 491–497. [Google Scholar] [CrossRef]
- Johansson, J.; Heijnesson Hultén, A.; Ajdari, S.; Nilsson, P.; Samuelsson, M.; Normann, F.; Andersson, K. Gas-Phase Chemistry of the NO–SO2–ClO2 System Applied to Flue Gas Cleaning. Ind. Eng. Chem. Res. 2018, 57, 14347–14354. [Google Scholar] [CrossRef]
- Jin, D.-S.; Deshwal, B.-R.; Park, Y.-S.; Lee, H.-K. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution. J. Hazard. Mater. 2006, 135, 412–417. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, D.; Qiu, R.; Tang, Y.; Du, C. Non-thermal plasma technology for organic contaminated soil remediation: A review. Chem. Eng. J. 2017, 313, 157–170. [Google Scholar] [CrossRef]
- Feng, X.; Liu, H.; He, C.; Shen, Z.; Wang, T. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: A review. Catal. Sci. Technol. 2018, 8, 936–954. [Google Scholar] [CrossRef]
- Hong, L.; Chen, D.; Yang, M.; Yin, L.; Wang, D.; Wang, L. Interaction between NO and SO2 removal processes in a pulsed corona discharge plasma (PCDP) reactor and the mechanism. Chem. Eng. J. 2019, 359, 1130–1138. [Google Scholar] [CrossRef]
- Yamamoto, T.; Okubo, M.; Hayakawa, K.; Kitaura, K. Towards ideal NOx control technology using a plasma-chemical hybrid process. IEEE Trans. Ind. Appl. 2001, 37, 1492–1498. [Google Scholar] [CrossRef]
- Obradović, B.M.; Sretenović, G.B.; Kuraica, M.M. A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coal-combustion flue gas. J. Hazard. Mater. 2011, 185, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Sun, B.M.; Xiao, H.P.; Zeng, J.Y.; Duan, E.P.; Xin, J.; Li, C. Effect of Reactor Structure in DBD for Nonthermal Plasma Processing of NO in N-2 at Ambient Temperature. Plasma Chem. Plasma Process. 2012, 32, 1189–1201. [Google Scholar] [CrossRef]
- Pham, H.-C.; Kim, K.-S. Effect of TiO2 Thin Film Thickness on NO and SO2 Removals by Dielectric Barrier Discharge-Photocatalyst Hybrid Process. Ind. Eng. Chem. Res. 2013, 52, 5296–5301. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Y.; Zhu, T. Removal of NOx, SO2, and Hg From Simulated Flue Gas by Plasma—Absorption Hybrid System. IEEE Trans. Plasma Sci. 2013, 41, 312–318. [Google Scholar] [CrossRef]
- Huang, L.; Dang, Y. Removal of SO2 and NOx by Pulsed Corona Combined with in situ Ca(OH)2 Absorption. Chin. J. Chem. Eng. 2011, 19, 518–522. [Google Scholar] [CrossRef]
- Zhao, L.; Luo, Z.; Jiang, J.; Zhou, D.; Gao, X.; Cen, K. Energy Consumption Analysis and OH Radical Detection of NO Conversion Process From Flue Gas Using Pulsed Corona Discharge. IEEE Trans. Plasma Sci. 2014, 42, 105–113. [Google Scholar] [CrossRef]
- Seo, S.H.; Jo, S.H.; Son, Y.S.; Kim, T.H.; Kim, T.H.; Yu, S. A preliminary study on effect of additive in the removal of NOx and SO2 by electron beam irradiation. Chem. Eng. J. 2020, 387, 124083. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Y.X.; Chmielewski, A.G.; Pawelec, A.; Bulka, S. NO Oxidation with NaClO, NaClO2, and NaClO3 Solution Using Electron Beam and a One Stage Absorption System. Plasma Chem. Plasma Process. 2020, 40, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Zhang, T.; Guo, Y.; Wang, J.; Wei, J.; Yu, Q. Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics. Chem. Eng. J. 2021, 420, 127588. [Google Scholar] [CrossRef]
- Zhao, S.; Pudasainee, D.; Duan, Y.; Gupta, R.; Liu, M.; Lu, J. A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies. Prog. Energy Combust. Sci. 2019, 73, 26–64. [Google Scholar] [CrossRef]
- Standard Electrode Potential (Data Page). Wikipedia Encyclopedia. Available online: https://encyclopedia.thefreedictionary.com/Standard+electrode+potential+(data+page) (accessed on 12 September 2022).
- Yi, S.; Liliang, Y.; Haobing, H.; Jiawei, Y.; Shao’an, C. Research trend and practical development of advanced oxdation process on degradation of recalcitrant organic wastewater. CIESC J. 2017, 68, 1743–1756. [Google Scholar]
- Oh, S.-Y.; Kang, S.-G.; Chiu, P.C. Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron. Sci. Total Environ. 2010, 408, 3464–3468. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Collins, M.M.; Cooper, C.D.; Dietz, J.D.; Clausen, C.A.; Tazi, L.M. Pilot-scale evaluation of H2O2 injection to control to NOx emissions. J. Environ. Eng. ASCE 2001, 127, 329–336. [Google Scholar] [CrossRef]
- Martinez, N.S.; Fernandez, J.F.; Segura, X.F.; Ferrer, A.S. Pre-oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent. J. Hazard. Mater. 2003, 101, 315–322. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B Environ. 2019, 255, 117739. [Google Scholar] [CrossRef]
- Lopez-Cueto, G.; Ostra, M.; Ubide, C.; Zuriarrain, J. Fenton’s reagent for kinetic determinations. Anal. Chim. Acta 2004, 515, 109–116. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Sheng, C.; Zhang, Y.; Zhao, L. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process. Chem. Eng. J. 2010, 162, 1006–1011. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, J.; Wang, Q. Removal of Hg-0 from containing-SO2/NO flue gas by ultraviolet/H2O2 process in a novel photochemical reactor. Aiche J. 2014, 60, 2275–2285. [Google Scholar] [CrossRef]
- Guo, R.-T.; Pan, W.-G.; Zhang, X.-B.; Ren, J.-X.; Jin, Q.; Xu, H.-J.; Wu, J. Removal of NO by using Fenton reagent solution in a lab-scale bubbling reactor. Fuel 2011, 90, 3295–3298. [Google Scholar] [CrossRef]
- Hao, R.; Mao, Y.; Mao, X.; Wang, Z.; Gong, Y.; Zhang, Z.; Zhao, Y. Cooperative removal of SO2 and NO by using a method of UV-heat/H2O2 oxidation combined with NH4OH-(NH4)2SO3 dual-area absorption. Chem. Eng. J. 2019, 365, 282–290. [Google Scholar] [CrossRef]
- Thomas, N.; Dionysiou, D.D.; Pillai, S.C. Heterogeneous Fenton catalysts: A review of recent advances. J. Hazard. Mater. 2021, 404, 124082. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Lin, H.; Yu, F.; Chen, Z.; Li, C.; Liu, Z.; Yu, J.; Gao, S. The simultaneous removal of SO2 and NO from flue gas over activated coke in a multi-stage fluidized bed at low temperature. Fuel 2020, 275, 117862. [Google Scholar] [CrossRef]
- Li, J.; Ninh Pham, A.; Dai, R.; Wang, Z.; Waite, T.D. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites. J. Hazard. Mater. 2020, 392, R713–R715. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, S.; He, S.; Xiong, Y. Follow-up mechanism study on NO oxidation with vaporized H2O2 catalyzed by Fe2O3 in a fixed-bed reactor. Chem. Eng. J. 2019, 356, 662–672. [Google Scholar] [CrossRef]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Ezyske, C.M. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res. 2011, 45, 6189–6194. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, Y.G.; Khan, M.A.; Sakyi, N.Y. Kinetics and Modeling of the Removal of Nitric Oxide by Aqueous Sodium Persulfate Simultaneously Activated by Temperature and Fe2+. Ind. Eng. Chem. Res. 2014, 53, 828–839. [Google Scholar] [CrossRef]
- Adewuyi, Y.G.; Sakyi, N.Y. Simultaneous Absorption and Oxidation of Nitric Oxide and Sulfur Dioxide by Aqueous Solutions of Sodium Persulfate Activated by Temperature. Ind. Eng. Chem. Res. 2013, 52, 11702–11711. [Google Scholar] [CrossRef]
- Chen, X.; Hu, X. Removal of NOx and SO2 from the Coal-Fired Flue Gas Using a Rotating Packed Bed Pilot Reactor with Peroxymonosulfate Activated by Fe(II) and Heating. Energy Fuels 2019, 33, 6707–6716. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Wang, Y.; Yin, Y.; Pan, J.; Zhang, J.; Wang, Q. Simultaneous absorption of SO2 and NO from flue gas using ultrasound/Fe2+/heat coactivated persulfate system. J. Hazard. Mater. 2018, 342, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, M.G.; Andersen, H.R. Comparison of UVC/S2O82- with UVC/H2O2 in terms of efficiency and cost for the removal of micropollutants from groundwater. Chemosphere 2015, 119, S81–S88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Lin, Z.; Zhang, H. Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H2O2. Chem. Eng. J. 2016, 285, 392–401. [Google Scholar] [CrossRef]
- Kwon, M.; Kim, S.; Yoon, Y.; Jung, Y.; Hwang, T.-M.; Lee, J.; Kang, J.-W. Comparative evaluation of ibuprofen removal by UV/H2O2 and UV/S2O82− processes for wastewater treatment. Chem. Eng. J. 2015, 269, 379–390. [Google Scholar] [CrossRef]
- Wei, Z.; Villamena, F.A.; Weavers, L.K. Kinetics and Mechanism of Ultrasonic Activation of Persulfate: An in Situ EPR Spin Trapping Study. Environ. Sci. Technol. 2017, 51, 3410–3417. [Google Scholar] [CrossRef]
- Si, M.; Shen, B.; Adwek, G.; Xiong, L.; Liu, L.; Yuan, P.; Gao, H.; Liang, C.; Guo, Q. Review on the NO removal from flue gas by oxidation methods. J. Environ. Sci. 2021, 101, 49–71. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, Y.G.; Sakyi, N.Y. Removal of Nitric Oxide by Aqueous Sodium Persulfate Simultaneously Activated by Temperature and Fe2+ in a Lab-scale Bubble Reactor. Ind. Eng. Chem. Res. 2013, 52, 14687–14697. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Liu, Z.; Wang, Q. Oxidation Removal of Nitric Oxide from Flue Gas Using UV Photolysis of Aqueous Hypochlorite. Environ. Sci. Technol. 2017, 51, 11950–11959. [Google Scholar] [CrossRef] [PubMed]
- Byoun, S.; Shin, D.N.; Moon, I.-S.; Byun, Y. Quick vaporization of sprayed sodium hypochlorite (NaClO(aq)) for simultaneous removal of nitrogen oxides (NOx), sulfur dioxide (SO2), and mercury (Hg0). J. Air Waste Manag. Assoc. 2019, 69, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lun, L.; Tan, Z.; Zhang, Y.; Li, Q. Simultaneous wet desulfurization and denitration by an oxidant absorbent of NaClO2/CaO2. Environ. Sci. Pollut. Res. 2019, 26, 29032–29040. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Yang, S.; Yuan, B.; Zhao, Y. Simultaneous desulfurization and denitrification through an integrative process utilizing NaClO2/Na2S2O8. Fuel Processing Technol. 2017, 159, 145–152. [Google Scholar] [CrossRef]
- Hao, R.; Song, Y.; Tian, Z.; Li, Y.; Zhao, Y.; Wang, Z.; Gong, Y.; Ma, Z.; Qian, Z. Cooperative removal of SO2 and NO using a cost-efficient triple-area control method. Chem. Eng. J. 2020, 383, 123164. [Google Scholar] [CrossRef]
- Hao, R.; Ma, Z.; Qian, Z.; Gong, Y.; Wang, Z.; Luo, Y.; Yuan, B.; Zhao, Y. New insight into the behavior and cost-effectiveness of different radicals in the removal of NO and Hg0. Chem. Eng. J. 2020, 385, 123885. [Google Scholar] [CrossRef]
- Madia, G.; Koebel, M.; Elsener, M.; Wokaun, A. Side reactions in the selective catalytic reduction of NOx with various NO2 fractions. Ind. Eng. Chem. Res. 2002, 41, 4008–4015. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, R.T. 110th Anniversary: Recent Progress and Future Challenges in Selective Catalytic Reduction of NO by H2 in the Presence of O2. Ind. Eng. Chem. Res. 2019, 58, 10140–10153. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Baeyens, J.; Seville, J.P.K. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass Bioenergy 2010, 34, 1393–1409. [Google Scholar] [CrossRef]
- Li, G.; Wang, B.; Xu, W.Q.; Li, Y.; Han, Y.; Sun, Q. Simultaneous removal of SO2 and NOx from flue gas by wet scrubbing using a urea solution. Environ. Technol. 2019, 40, 2620–2632. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Li, C.; Li, J.; Shi, Y.; Meng, X. A Review on Selective Catalytic Reduction of NOx by NH3 over Mn–Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations. Catalysts 2017, 7, 199. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Lee, J.M. Conventional and New Materials for Selective Catalytic Reduction (SCR) of NOx. Chemcatchem 2018, 10, 1499–1511. [Google Scholar] [CrossRef]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl. Therm. Eng. 2014, 66, 395–414. [Google Scholar] [CrossRef]
- Yun, B.K.; Kim, M.Y. Modeling the selective catalytic reduction of NOx by ammonia over a Vanadia-based catalyst from heavy duty diesel exhaust gases. Appl. Therm. Eng. 2013, 50, 152–158. [Google Scholar] [CrossRef]
- Wang, F.; Ma, J.; He, G.; Chen, M.; Zhang, C.; He, H. Nanosize Effect of Al2O3 in Ag/Al2O3 Catalyst for the Selective Catalytic Oxidation of Ammonia. ACS Catal. 2018, 8, 2670–2682. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, R.-t.; Zhang, X.-f.; Liu, Y.-z.; Duan, C.-p.; Wu, G.-l.; Pan, W.-g. Cerium Oxide-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NOx with NH3: A Review. Energy Fuels 2021, 35, 2981–2998. [Google Scholar] [CrossRef]
- Pena, D.A.; Uphade, B.S.; Smirniotis, P.G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3I. Evaluation and characterization of first row transition metals. J. Catal. 2004, 221, 421–431. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Tian, J.; Zhong, Y.; Zou, Z.; Dong, R.; Gao, S.; Xu, W.; Tan, D. The effects of Mn-based catalysts on the selective catalytic reduction of NOx with NH3 at low temperature: A review. Fuel Processing Technol. 2022, 230, 107213. [Google Scholar] [CrossRef]
- Kapteijn, F.; Singoredjo, L.; Andreini, A.; Moulijn, J.A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B: Environ. 1994, 3, 173–189. [Google Scholar] [CrossRef]
- Han, L.; Cai, S.; Gao, M.; Hasegawa, J.-y.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chem. Rev. 2019, 119, 10916–10976. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Liao, Y.; Xiao, X.; Dang, H.; Yang, S. The mechanism of the effect of H2O on the low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel. Catal. Sci. Technol. 2015, 5, 2132–2140. [Google Scholar] [CrossRef]
- Mohan, S.; Dinesha, P.; Kumar, S. NOx reduction behaviour in copper zeolite catalysts for ammonia SCR systems: A review. Chem. Eng. J. 2020, 384, 123253. [Google Scholar] [CrossRef]
- Liu, S.-M.; Guo, R.-T.; Sun, P.; Hu, C.-X.; Wang, S.-X.; Pan, W.-G.; Li, M.-Y.; Liu, S.-W.; Sun, X.; Liu, J. Mechanistic investigation of the different poisoning mechanisms of Cl and P on Mn/TiO2 catalyst for selective catalytic reduction of NOx with NH3. J. Taiwan Inst. Chem. Eng. 2017, 80, 314–325. [Google Scholar] [CrossRef]
- Cai, S.; Hu, H.; Li, H.; Shi, L.; Zhang, D. Design of multi-shell Fe2O3@MnOx@CNTs for the selective catalytic reduction of NO with NH3:improvement of catalytic activity and SO2 tolerance. Nanoscale 2016, 8, 3588–3598. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Yu, D.; Yang, L.; Sheng, Z. Combined effects Na and SO2 in flue gas on Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO by NH3 simulated by Na2SO4 doping. Appl. Surf. Sci. 2016, 378, 167–173. [Google Scholar] [CrossRef]
- Watling, T.C.; Lopez, Y.; Pless, J.D.; Sukumar, B.; Klink, W.; Markatou, P. Removal of Hydrocarbons and Particulate Matter Using a Vanadia Selective Catalytic Reduction Catalyst: An Experimental and Modeling Study. SAE Int. J. Engines 2013, 6, 882–897. [Google Scholar] [CrossRef]
- Liu, K.J.; Yu, Q.B.; Wang, B.L.; San, J.B.; Duan, W.J.; Qin, Q. Binary copper-manganese based catalysts with urea for low-temperature selective catalytic reduction of NO: Performance, characterization and mechanism. Appl. Surf. Sci. 2020, 508, 144755. [Google Scholar] [CrossRef]
- Tu, B.-S.; Sun, W.; Xue, Y.-J.; Zaman, W.Q.; Cao, L.-M.; Yang, J. Facile Synthesis of PtxNiy Catalyst Supported on Carbon for Low Temperature H2–SCR. ACS Sustain. Chem. Eng. 2017, 5, 5200–5207. [Google Scholar] [CrossRef]
- Liu, Y.; Tursun, M.; Yu, H.; Wang, X. Surface property and activity of Pt/Nb2O5-ZrO2 for selective catalytic reduction of NO by H-2. Mol. Catal. 2019, 464, 22–28. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Yu, H.; Wang, X. The functions of Pt located at different positions of HZSM-5 in H-2-SCR. Chem. Eng. J. 2019, 355, 470–477. [Google Scholar] [CrossRef]
- Resitoglu, I.A.; Keskin, A. Hydrogen applications in selective catalytic reduction of NOx emissions from diesel engines. Int. J. Hydrog. Energy 2017, 42, 23389–23394. [Google Scholar] [CrossRef]
- Cai, X.; Sun, W.; Zaman, W.Q.; Cao, L.; Yang, J. Limited Ce doped Ni–Co as a highly efficient catalyst for H2-SCR of NO with good resistance to SO2 and H2O at low temperature. RSC Adv. 2016, 6, 91930–91939. [Google Scholar] [CrossRef]
- Mrad, R.; Aissat, A.; Cousin, R.; Courcot, D.; Siffert, S. Catalysts for NOx selective catalytic reduction by hydrocarbons (HC-SCR). Appl. Catal. A-Gen. 2015, 504, 542–548. [Google Scholar] [CrossRef]
- Fu, M.; Li, C.; Lu, P.; Qu, L.; Zhang, M.; Zhou, Y.; Yu, M.; Fang, Y. A review on selective catalytic reduction of NOx by supported catalysts at 100-300 degrees C-catalysts, mechanism, kinetics. Catal. Sci. Technol. 2014, 4, 14–25. [Google Scholar] [CrossRef]
- Feng, T.; Huo, M.; Zhao, X.; Wang, T.; Xia, X.; Ma, C. Reduction of SO2 to elemental sulfur with H-2 and mixed H-2/CO gas in an activated carbon bed. Chem. Eng. Res. Des. 2017, 121, 191–199. [Google Scholar] [CrossRef]
- Resitoglu, I.A.; Keskin, A.; Özarslan, H.; Bulut, H. Selective catalytic reduction of NOx emissions by hydrocarbons over Ag–Pt/Al2O3 catalyst in diesel engine. Int. J. Environ. Sci. Technol. 2019, 16, 6959–6966. [Google Scholar] [CrossRef]
- Cheng, X.; Bi, X.T. A review of recent advances in selective catalytic NOx reduction reactor technologies. Particuology 2014, 16, 1–18. [Google Scholar] [CrossRef]
- Pan, H.; Guo, Y.; Jian, Y.; He, C. Synergistic Effect of Non-thermal Plasma on NOx Reduction by CH4 over an In/H-BEA Catalyst at Low Temperatures. Energy Fuels 2015, 29, 5282–5289. [Google Scholar] [CrossRef]
- Pekridis, G.; Kaklidis, N.; Komvokis, V.; Athanasiou, C.; Konsolakis, M.; Yentekakis, I.V.; Marnellos, G.E. Surface and Catalytic Elucidation of Rh/γ-Al2O3 Catalysts during NO Reduction by C3H8 in the Presence of Excess O2, H2O, and SO2. J. Phys. Chem. A 2010, 114, 3969–3980. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G. Low-Temperature Selective Catalytic Reduction of NO by CO in the Presence of O2 over Cu:Ce Catalysts Supported by Multiwalled Carbon Nanotubes. Ind. Eng. Chem. Res. 2018, 57, 8871–8883. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, J.; Hardacre, C. Research Progress in the Selective Catalytic Reduction of NOx by H2 in the Presence of O2. Catal. Surv. Asia 2018, 22, 146–155. [Google Scholar] [CrossRef]
- Liu, K.; Yu, Q.; Qin, Q.; Wang, C. Selective catalytic reduction of nitric oxide with carbon monoxide over alumina-pellet-supported catalysts in the presence of excess oxygen. Environ. Technol. 2018, 39, 1878–1885. [Google Scholar] [CrossRef]
- Tarjomannejad, A.; Farzi, A.; Niaei, A.; Salari, D. NO reduction by CO over LaB0.5B’O-0.5(3) (B = Fe, Mn, B’=Fe, Mn, Co, Cu) perovskite catalysts, an experimental and kinetic study. J. Taiwan Inst. Chem. Eng. 2017, 78, 200–211. [Google Scholar] [CrossRef]
- Hamada, H.; Haneda, M. A review of selective catalytic reduction of nitrogen oxides with hydrogen and carbon monoxide. Appl. Catal. A-Gen. 2012, 421, 1–13. [Google Scholar] [CrossRef]
- Sreekanth, P.M.; Smirniotis, P.G. Selective Reduction of NO with CO Over Titania Supported Transition Metal Oxide Catalysts. Catal. Lett. 2008, 122, 37–42. [Google Scholar] [CrossRef]
- Kim, H.; Han, B.; Woo, C.G.; Kim, Y. NOx Removal Performance of a Wet Reduction Scrubber Combined with Oxidation by an Indirect DBD Plasma for Semiconductor Manufacturing Industries. IEEE Trans. Ind. Appl. 2018, 54, 6401–6407. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, X.; Ren, Z. Germanium-based polyoxometalates for the adsorption-decomposition of NOx. J. Hazard. Mater. 2021, 402, 123494. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, R.; Moffat, J.B. A self-contained catalyst for the reduction of NO2. Appl. Catal. B Environ. 1997, 13, 167–173. [Google Scholar] [CrossRef]
- Yang, R.T.; Chen, N. A New Approach to Decomposition of Nitric-Oxide Using Sorbent Catalyst Without Reducing Gas—Use of Heteropoly Compounds. Ind. Eng. Chem. Res. 1994, 33, 825–831. [Google Scholar] [CrossRef]
- Belanger, R.; Moffat, J.B. A Comparative-Study of the Adsorption and Reaction Of Nitrogen-Oxides on 12-Tungstophosphoric, 12-Tungstosilicic, and 12-Molybdophosphoric Acids. J. Catal. 1995, 152, 179–188. [Google Scholar] [CrossRef]
- McCormick, R.L.; Boonrueng, S.K.; Herring, A.M. In situ IR and temperature programmed desorption mass spectrometry study of NO absorption and decomposition by silica supported 12-tungstophosphoric acid. Catal. Today 1998, 42, 145–157. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Zhu, L.L.; Ma, J.; Ren, S.L.; Yang, X.Y. Temperature programmed desorption-mass spectrometry study of NO desorption and decomposition by titania supported 12-tungstophosphoric acid. React. Kinet. Catal. Lett. 2002, 76, 93–101. [Google Scholar] [CrossRef]
- Joshi, J.B.; Mahajani, V.V.; Juvekar, V.A. Absorption Of NOx Gases. Chem. Eng. Commun. 1985, 33, 1–92. [Google Scholar] [CrossRef]
- Thomas, D.; Vanderschuren, J. Nitrogen oxides scrubbing with alkaline solutions. Chem. Eng. Technol. 2000, 23, 449–455. [Google Scholar] [CrossRef]
- Valluri, S.; Kawatra, S.K. Simultaneous removal of CO2, NOx and SOx using single stage absorption column. J. Environ. Sci. 2021, 103, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Yih, S.M.; Lii, C.W. Simultaneous Absorption of Nitric-Oxide and Sulfur-Dioxide in Fe2—Edta Solutions in a Packed Absorber-Stripper Unit. Chem. Eng. J. Biochem. Eng. J. 1989, 42, 145–152. [Google Scholar]
- Harriott, P.; Smith, K.; Benson, L.B. Simultaneous removal of NO and SO2 in packed scrubbers or spray towers. Environ. Prog. 1993, 12, 110–113. [Google Scholar] [CrossRef]
- Yih, S.-M.; Lii, C.-W. Absorption of no and SO2 in Fe(II)-edta solutions I. absorption in a double stirred vessel. Chem. Eng. Commun. 1988, 73, 43–53. [Google Scholar] [CrossRef]
- Yang, L.; Chou, X.-w.; Li, C.; Long, X.-l.; Yuan, W.-k. Reduction of [Fe(III)EDTA]− catalyzed by activated carbon modified with KOH solution. J. Ind. Eng. Chem. 2013, 19, 784–790. [Google Scholar] [CrossRef]
- He, F.; Deng, X.; Chen, M. Evaluation of Fe(II)EDTA-NO reduction by zinc powder in wet flue gas denitrification technology with Fe(II)EDTA. Fuel 2017, 199, 523–531. [Google Scholar] [CrossRef]
- He, F.; Deng, X.; Chen, M. Mechanism and kinetics of Fe(II)EDTANO reduction by iron powder under anaerobic condition. Fuel 2016, 186, 605–612. [Google Scholar] [CrossRef]
- Suchecki, T.T.; Mathews, B.; Augustyniak, A.W.; Kumazawa, H. Applied Kinetics Aspects of Ferric EDTA Complex Reduction with Metal Powder. Ind. Eng. Chem. Res. 2014, 53, 14234–14240. [Google Scholar] [CrossRef]
- He, F.; Qian, Y.; Xu, J. Performance, Mechanism, and Kinetics of Fe(III)EDTA Reduction by Thiourea Dioxide. Energy Fuels 2019, 33, 3331–3338. [Google Scholar] [CrossRef]
- Suchecki, T.T.; Sada, E.; Kumazawa, H. Reduction of (ethylenediaminetetraacetato)iron(III) by sulfite at the boiling temperature. Ind. Eng. Chem. Res. 1991, 30, 2201–2204. [Google Scholar] [CrossRef]
- Suchecki, T.T.; Mathews, B.; Kumazawa, H. Kinetic Study of Ambient-Temperature Reduction of FeIIIedta by Na2S2O4. Ind. Eng. Chem. Res. 2005, 44, 4249–4253. [Google Scholar] [CrossRef]
- Liang, C.; Liang, C.-P.; Chen, C.-C. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. J. Contam. Hydrol. 2009, 106, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; He, Y.; Sun, T.; Wang, Y.; Jia, J. Simultaneous removal of NOx and SO2 from flue gas using combined Na2SO3 assisted electrochemical reduction and direct electrochemical reduction. J. Hazard. Mater. 2014, 276, 371–376. [Google Scholar] [CrossRef]
- Adewuyi, Y.G.; Khan, M.A. Nitric oxide removal by combined persulfate and ferrous–EDTA reaction systems. Chem. Eng. J. 2015, 281, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Adewuyi, Y.G.; Khan, M.A. Nitric oxide removal from flue gas by combined persulfate and ferrous–EDTA solutions: Effects of persulfate and EDTA concentrations, temperature, pH and SO2. Chem. Eng. J. 2016, 304, 793–807. [Google Scholar] [CrossRef] [Green Version]
- Jastrząb, K. Properties of activated cokes used for flue gas treatment in industrial waste incineration plants. Fuel Process. Technol. 2012, 101, 16–22. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Z. Carbon supported vanadia for multi-pollutants removal from flue gas. Fuel 2013, 108, 149–158. [Google Scholar] [CrossRef]
- Liu, Z.-S. Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers. Waste Manag. 2008, 28, 2329–2335. [Google Scholar] [CrossRef] [PubMed]
- Severa, G.; Head, J.; Bethune, K.; Higgins, S.; Fujise, A. Comparative studies of low concentration SO2 and NO2 sorption by activated carbon supported [C2mim] [Ac] and KOH sorbents. J. Environ. Chem. Eng. 2018, 6, 718–727. [Google Scholar] [CrossRef]
- Sumathi, S.; Bhatia, S.; Lee, K.T.; Mohamed, A.R. Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO2 and NO—Process study. Chem. Eng. J. 2010, 162, 51–57. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, L.; Wang, J.; Yao, J.; Li, J. Biochar preparation from Solidago canadensis and its alleviation of the inhibition of tomato seed germination by allelochemicals. RSC Adv. 2018, 8, 22370–22375. [Google Scholar] [CrossRef]
- Gao, F.; Tang, X.; Yi, H.; Zhang, B.; Zhao, S.; Wang, J.; Gu, T.; Wang, Y. NiO-Modified Coconut Shell Based Activated Carbon Pretreated with KOH for the High-Efficiency Adsorption of NO at Ambient Temperature. Ind. Eng. Chem. Res. 2018, 57, 16593–16603. [Google Scholar] [CrossRef]
- Shen, Y.F.; Ge, X.L.; Chen, M.D. Catalytic oxidation of nitric oxide (NO) with carbonaceous materials. Rsc Adv. 2016, 6, 8469–8482. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Zhu, T.; Ye, M. Effects of Concentration and Adsorption Product on the Adsorption of SO2 and NO on Activated Carbon. Energy Fuels 2013, 27, 360–366. [Google Scholar] [CrossRef]
- Xiong, Y.; Tang, C.; Yao, X.; Zhang, L.; Li, L.; Wang, X.; Deng, Y.; Gao, F.; Dong, L. Effect of metal ions doping (M=Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Appl. Catal. A: Gen. 2015, 495, 206–216. [Google Scholar] [CrossRef]
- Sumathi, S.; Bhatia, S.; Lee, K.T.; Mohamed, A.R. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx. J. Hazard. Mater. 2010, 176, 1093–1096. [Google Scholar] [CrossRef] [PubMed]
- Sumathi, S.; Bhatia, S.; Lee, K.T.; Mohamed, A.R. SO2 and NO Simultaneous Removal from Simulated Flue Gas over Cerium-Supported Palm Shell Activated at Lower Temperatures−Role of Cerium on NO Removal. Energy Fuels 2010, 24, 427–431. [Google Scholar] [CrossRef]
- Silas, K.; Ghani, W.A.W.A.K.; Choong, T.S.Y.; Rashid, U.; Soltani, S. Regeneration/Optimization of Activated Carbon Monolith in Simultaneous SO2/NOx Removal from Flue Gas. Chem. Eng. Technol. 2019, 42, 1928–1940. [Google Scholar] [CrossRef]
- Silas, K.; Ghani, W.A.W.A.K.; Choong, T.S.Y.; Rashid, U. Breakthrough studies of CO3O4 supported activated carbon monolith for simultaneous SO2/NOx removal from flue gas. Fuel Process. Technol. 2018, 180, 155–165. [Google Scholar] [CrossRef]
- Li, Q.; Hou, Y.; Han, X.; Wang, J.; Liu, Y.; Xiang, N.; Huang, Z. Promotional effect of cyclic desulfurization and regeneration for selective catalytic reduction of NO by NH3 over activated carbon. J. Clean. Prod. 2020, 249, 119392. [Google Scholar] [CrossRef]
- Zheng, Y.; Kovarik, L.; Engelhard, M.H.; Wang, Y.; Wang, Y.; Gao, F.; Szanyi, J. Low-Temperature Pd/Zeolite Passive NOx Adsorbers: Structure, Performance, and Adsorption Chemistry. J. Phys. Chem. C 2017, 121, 15793–15803. [Google Scholar] [CrossRef]
- Deng, H.; Yi, H.; Tang, X.; Liu, H.; Zhou, X. Interactive Effect for Simultaneous Removal of SO2, NO, and CO2 in Flue Gas on Ion Exchanged Zeolites. Ind. Eng. Chem. Res. 2013, 52, 6778–6784. [Google Scholar] [CrossRef]
- Chiu, C.-H.; Hsi, H.-C.; Lin, C.-C. Control of mercury emissions from coal-combustion flue gases using CuCl2-modified zeolite and evaluating the cobenefit effects on SO2 and NO removal. Fuel Process. Technol. 2014, 126, 138–144. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Q.; Liu, T.; Xiao, L.; Zheng, X. NOx storage and reduction with methane by plasma at ambient temperature. RSC Adv. 2012, 2, 5094–5097. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Chen, P.; Chen, M.; Zheng, X. An enhanced plasma-catalytic method for DeNOx in simulated flue gas at room temperature. Chem. Commun. 2013, 49, 9353–9355. [Google Scholar] [CrossRef]
- Vikrant, K.; Kumar, V.; Kim, K.-H.; Kukkar, D. Metal–organic frameworks (MOFs): Potential and challenges for capture and abatement of ammonia. J. Mater. Chem. A 2017, 5, 22877–22896. [Google Scholar] [CrossRef]
- Khan, N.A.; Hasan, Z.; Jhung, S.H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. J. Hazard. Mater. 2013, 244–245, 444–456. [Google Scholar] [CrossRef]
- Murdock, C.R.; Hughes, B.C.; Lu, Z.; Jenkins, D.M. Approaches for synthesizing breathing MOFs by exploiting dimensional rigidity. Coord. Chem. Rev. 2014, 258–259, 119–136. [Google Scholar] [CrossRef]
- Xiao, T.; Liu, D. The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives. Microporous Mesoporous Mater. 2019, 283, 88–103. [Google Scholar] [CrossRef]
Method | Operation Concept | Advantage | Disadvantage | Ref. |
---|---|---|---|---|
Selective catalytic reduction (SCR) | Use gaseous reductants to reduce NOx with catalysts under approximate temperature | High efficiencies | High costs of catalysts Ammonia slip Corrosion of equipment Limited life span of catalyst Large amounts of waste | [8] |
Selective non-catalytic reduction (SNCR) | Use gaseous reductants to reduce NOx without catalysts under high temperature | Reliable technology No catalyst used Less equipment investment | High consumption of reactant Ammonia leakage The formation of N2O and CO Fly ash and unburned carbon increasing | [9] |
Absorption | Exposed to liquid absorbents to scrub NOx from gas phase | Simultaneous removal of muti-pollutant Simple operation Stability against inlet gas | High amount of liquid waste Low efficiency Large multi-stage scrubbers | [10] |
Adsorption | NOx can be adsorbed by porous solid materials under approximate pressure and temperature | No liquid wastes High purification efficiency Simple equipment | High investment cost Huge equipment | [11] |
Non-thermal plasma (NTP) | High-energy electrons excite molecules to generate radicals that can oxidize NOx in a very short time | Low equipment cost No waste Simple operation Useful by-product | High energy cost Low efficiency Low operating pressure | [12] |
NTP Reactor | Gas Composition | Reaction Condition | Maximum Removal Efficiency | Ref. |
---|---|---|---|---|
DBD * | Dry Air/NO (206 ppm) | Energy density: 90 J/L Gas residence time: 3.3 s Reaction temperature: 25 °C Gas flow rate: 1 L/min | 99.5% | [42] |
Coal-fired flue gas, NO (200 ppm), SO2 (250 ppm) | Energy density: 22 J/L Reaction temperature: 75 °C (do*)/90 °C (io*) Gas flow rate: 150 m3/h | 30%(do)/70%(io) | [43] | |
N2/NO (500 ppm) | Energy density: 570 J/L Gas residence time: 0.64 s Gas flow rate: 10 L/min | 80% | [44] | |
NO (300 ppm), SO2 (260 ppm), N2 balance | Catalyst: TiO2 Pulse frequency: 900 Hz Capacitor-Charging voltage: 12 kV Gas residence time: 1.0 s Reaction temperature: 25 C Gas flow rate: 5 L/min | 100% | [45] | |
PCD * | NO (200 ppm), SO2 (150 ppm), CO (150 ppm), H2O (10%), O2 (20%) | Energy density: 7.6 J/L Gas residence time: 1.68 s Reaction temperature: 137 °C Gas flow rate: 1 L/min | 65% | [41] |
NO (120 ppm), SO2 (525 ppm), O2 (6%), CO2 (12%), H2O (3%), N2 balance | Energy density: 80 J/L Gas residence time: 5.0 s Reaction temperature: 25 °C Gas flow rate: 6 L/min | 71% | [46] | |
NO (180 ppm), SO2 (1013 ppm), air balance | Energy density: 45.8 J/L Gas residence time: 4.4 s Reaction temperature: 25 °C Gas flow rate: 72 L/min | 40% | [47] | |
NO (537 ppm), O2 (22%), H2O (RH = 60%), N2 balance | Energy density: 48.3 J/L Reaction temperature: 25 °C Gas flow rate: 0.3 m3/h | 98.3% | [48] | |
EBGP * | NO (200 ppm), NO2 (200 ppm) SO2 (200 ppm), air balance | Absorbed dose: 20 kGy Reaction ratio: 1:2 Gas residence time:30–40 s Gas flow rate: 1 L/min | 94.5% | [49] |
NO (1046 ppm), fuel-combustion flue gas | Wet scrubber: NaClO2 Absorbed dose: 10.9 kGy Gas residence time:11 min Gas flow rate: 200 mL/h | 95.03% | [50] |
Oxidant | Half-Cell Reaction | Oxidation Potential (eV) | Ref. |
---|---|---|---|
Fluorine (F2) | 3.05 | [53] | |
Hydroxyl radical (HO•) | 2.80 | [54] | |
Sulfate radical (SO4−•) | 2.60 | [55] | |
Ozone (O3) | 2.07 | [53] | |
Persulfate (S2O82−•) | 2.01 | [53] | |
Peroxymonosulfate (HSO5−) | 1.82 | [56] | |
Hydrogen peroxide (H2O2) | 1.78 | [53] | |
Permanganate (MnO4−) | 1.70 | [53] | |
Chloranion (ClO3-) | 1.49 | [53] | |
Chloine (Cl2) | 1.36 | [53] | |
Chromate (Cr2O72−) | 1.33 | [53] | |
Molecular oxygen (O2) | 1.23 | [53] |
Physical State | Reductants | Technologies | Reaction Scheme | Key Factors | Ref. |
---|---|---|---|---|---|
Gas | Ammonia (NH3) | SCR | Temperature window, NH3/NOx ratio, oxygen concentration, catalyst loading and the type of catalyst support used | [87] | |
Hydrogen (H2) | SCR | [88] | |||
Urea (CO(NH2)2) | SNCR | 2 + 4NO + O2 → 4N2 + 2CO2 + 2H2O | temperature, reagent/flue gas mixing, reagent/NOx ratio and reaction time | [89] | |
Liquid | Sodium sulfide (Na2S) | Wet Scrubbing | Gas–liquid ratio, solution concentration, oxidants concentration, temperature, pH value, reaction time | [30] | |
Urea solution | Wet scrubbing | [90] |
Reaction Phase | Equilibrium | Equilibrium Constant Value | Units |
---|---|---|---|
Gas | - | - | |
- | - | ||
- | - | ||
Gas-liquid | 2.44 | (kmol/m3)4/atm2 | |
(kmol/m3)4/atm | |||
6.14 | (kmol/m3)4/atm | ||
(kmol/m3)4/atm | |||
- | |||
- | - | ||
atm2/(kmol/m3) | |||
Liquid | kmol/m3 | ||
kmol/m3 | |||
(kmol/m3)−2 |
Carbon Source | Activation Condition | BET Surface (m2/g) | Reaction Condition | Performance | Ref. |
---|---|---|---|---|---|
Commercial activated coke | Steam activation (800 °C) | 218 | Temperature 120 °C, gas flow rate 0.420 Nm3/h, composition of gases: 82.8% N2, 6.0% O2, 11.0% H2O, 1000 ppm NO and 1000 ppm NH3. | Removal efficiency: 30.4% | [150] |
Commercial activated carbon | Steam activation (850 °C), V impregnation | - | Temperature: 200 °C, space velocity: 6500 L/(kg·h), SO2 (1500 ppm), NO (500 ppm), NH3 (500 ppm), O2 (3.4%), H2O (2.5%), N2 balance, gas flow rate: 7.00 L/min, contact time: 150 min | Removal efficiency: 70% | [151] |
Commercial activated carbon fibers | 1 M HNO3 impregnation for 48 h | 1498 | Temperature: 200 °C, SO2 (200 ± 10 ppm), NO (60 ± 3 ppm), air balance, gas flowrate: 0.06 L/min, contact time: 20 min | Removal efficiency: 60% | [152] |
Coconut shell | Ionic liquid and KOH impregnation | 1114 | Sorbent: 3.00 g, temperature: 25 °C, SO2 (5 ppm), NO2 (5 ppm), RH (50%), air balance, gas flow rate: 30.00 L/min, contact time: 1200 min | Breakthrough time: 41 min | [153] |
Palm shell | CO2 activation (1100 °C), Ce impregnation | - | Temperature: 150 °C, SO2 (2000 ppm), NO (500 ppm), O2 (10%), N2 balance, gas flow rate: 0.15 L/min, contact time: 300 min | Adsorption capacity: 3.5 mg/g | [154] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Xu, B. Purification Technologies for NOx Removal from Flue Gas: A Review. Separations 2022, 9, 307. https://doi.org/10.3390/separations9100307
Zhu Z, Xu B. Purification Technologies for NOx Removal from Flue Gas: A Review. Separations. 2022; 9(10):307. https://doi.org/10.3390/separations9100307
Chicago/Turabian StyleZhu, Zihan, and Bin Xu. 2022. "Purification Technologies for NOx Removal from Flue Gas: A Review" Separations 9, no. 10: 307. https://doi.org/10.3390/separations9100307
APA StyleZhu, Z., & Xu, B. (2022). Purification Technologies for NOx Removal from Flue Gas: A Review. Separations, 9(10), 307. https://doi.org/10.3390/separations9100307