Phytochemical Compound Profile and the Estimation of the Ferruginol Compound in Different Parts (Roots, Leaves, and Seeds) of Juniperus procera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Plant Materials and Extraction
2.3. GC/MS Analysis of Root Extract
2.4. High-Resolution DART-ToF-MS Analysis
2.5. Quantification of Ferruginol with HPLC
2.6. Statistical Analysis
3. Results and Discussion
3.1. GC/MS Analysis of Different Parts of Juniperus procera
3.2. Ferruginol Identification and Estimation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mujwah, A.A.; Mohammed, M.A.; Ahmed, M.H. First isolation of a flavonoid from Juniperus procera using ethyl acetate extract. Arab. J. Chem. 2010, 3, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Collenette, S. Wild flowers of Saudi Arabia; East Anglian Engraving Co., Ltd.: Norwich, UK, 1999; Volume 110, pp. 274–275. [Google Scholar]
- Ghazanfar, S.A. Handbook of Arabian Medicinal Plants; CRC press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Nuñez, Y.O.; Salabarria, I.S.; Collado, I.G.; Hernández-Galán, R. Screening Study of Potential Lead Compounds for Natural Product Based Fungicides from Juniperus Lucayana. Nat. Prod. Commun. 2008, 3, 132274115. [Google Scholar] [CrossRef]
- Tumen, I.; Eller, F.J.; Clausen, C.A.; Teel, J.A. Antifungal activity of heartwood extracts from three Juniperus species. BioResources 2013, 8, 12–20. [Google Scholar] [CrossRef]
- Abdel Ghany, T.; Hakamy, O.M. Juniperus procera as food safe additive, their antioxidant, anticancer and antimicrobial activity against some food-borne bacteria. J. Biol. Chem. Res. 2014, 31, 668–677. [Google Scholar]
- Hazubska-Przybył, T. Propagation of Juniper species by plant tissue culture: A mini-review. Forests 2019, 10, 1028. [Google Scholar] [CrossRef] [Green Version]
- Rivero-Montejo, S.d.J.; Vargas-Hernandez, M.; Torres-Pacheco, I. Nanoparticles as novel elicitors to improve bioactive compounds in plants. Agriculture 2021, 11, 134. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Na, M.; Kang, S.C. The role of bioactive substances in controlling foodborne pathogens derived from Metasequoia glyptostroboides Miki ex Hu. Food Chem. Toxicol. 2010, 48, 1945–1949. [Google Scholar] [CrossRef]
- Acquaviva, R.; Malfa, G.A.; Loizzo, M.R.; Xiao, J.; Bianchi, S.; Tundis, R. Advances on natural abietane, labdane and clerodane diterpenes as anti-cancer agents: Sources and mechanisms of action. Molecules 2022, 27, 4791. [Google Scholar] [CrossRef]
- Son, K.-H.; Oh, H.-M.; Choi, S.-K.; Han, D.C.; Kwon, B.-M. Anti-tumor abietane diterpenes from the cones of Sequoia sempervirens. Bioorganic Med. Chem. Lett. 2005, 15, 2019–2021. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, B.; Yao, S. Simultaneous determination of abietane-type diterpenes, flavonolignans and phenolic compounds in compound preparations of Silybum marianum and Salvia miltiorrhiza by HPLC-DAD-ESI MS. J. Pharm. Biomed. Anal. 2005, 38, 564–570. [Google Scholar] [CrossRef]
- Roa-Linares, V.C.; Brand, Y.M.; Agudelo-Gomez, L.S.; Tangarife-Castaño, V.; Betancur-Galvis, L.A.; Gallego-Gomez, J.C.; González, M.A. Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. Eur. J. Med. Chem. 2016, 108, 79–88. [Google Scholar] [CrossRef]
- Bisio, A.; Pedrelli, F.; D’Ambola, M.; Labanca, F.; Schito, A.M.; Govaerts, R.; De Tommasi, N.; Milella, L. Quinone diterpenes from Salvia species: Chemistry, botany, and biological activity. Phytochem. Rev. 2019, 18, 665–842. [Google Scholar] [CrossRef]
- González, M.A. Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684–704. [Google Scholar] [CrossRef]
- González-Cardenete, M.A.; Rivas, F.; Basset, R.; Stadler, M.; Hering, S.; Padrón, J.M.; Zaragozá, R.J.; Dea-Ayuela, M.A. Biological profiling of semisynthetic C19-functionalized ferruginol and sugiol analogues. Antibiotics 2021, 10, 184. [Google Scholar] [CrossRef]
- Wei, Y.; He, J.; Qin, H.; Wu Xa Yao, X. Determination of ferruginol in rat plasma via high-performance liquid chromatography and its application in pharmacokinetics study. Biomed. Chromatogr. 2009, 23, 1116–1120. [Google Scholar] [CrossRef]
- González, M.A.; Clark, J.; Connelly, M.; Rivas, F. Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group. Bioorganic Med. Chem. Lett. 2014, 24, 5234–5237. [Google Scholar] [CrossRef]
- Espinoza, M.; Santos, L.S.; Theoduloz, C.; Schmeda-Hirschmann, G.; Rodríguez, J.A. New gastroprotective ferruginol derivatives with selective cytotoxicity against gastric cancer cells. Planta Med. 2008, 74, 802–808. [Google Scholar] [CrossRef] [Green Version]
- Becerra, J.; Flores, C.; Mena, J.; Aqueveque, P.; Alarcón, J.; Bittner, M.; Hernández, V.; Hoeneisen, M.; Ruiz, E.; Silva, M. Antifungal and antibacterial activity of diterpenes isolated from wood extractables of Chilean Podocarpaceae. Boletín de la Soc. Chil. de Química 2002, 47, 151–157. [Google Scholar] [CrossRef]
- Bakir, D.; Akdeniz, M.; Ertas, A.; Yilmaz, M.A.; Yener, I.; Firat, M.; Kolak, U. A GC-MS method validation for quantitative investigation of some chemical markers in Salvia hypargeia Fisch. & CA Mey. of Turkey: Enzyme inhibitory potential of ferruginol. J. Food Biochem. 2020, 44, e13350. [Google Scholar]
- Zare, S.; Hatam, G.; Firuzi, O.; Bagheri, A.; Chandran, J.N.; Schneider, B.; Paetz, C.; Pirhadi, S.; Jassbi, A.R. Antileishmanial and pharmacophore modeling of abietane-type diterpenoids extracted from the roots of Salvia hydrangea. J. Mol. Struct. 2021, 1228, 129447. [Google Scholar] [CrossRef]
- Samoylenko, V.; Dunbar, D.C.; Gafur, M.A.; Khan, S.I.; Ross, S.A.; Mossa, J.S.; El-Feraly, F.S.; Tekwani, B.L.; Bosselaers, J.; Muhammad, I. Antiparasitic, nematicidal and antifouling constituents from Juniperus berries. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2008, 22, 1570–1576. [Google Scholar]
- Salih, A.M.; Al-Qurainy, F.; Khan, S.; Tarroum, M.; Nadeem, M.; Shaikhaldein, H.O.; Alabdallah, N.M.; Alansi, S.; Alshameri, A. Mass propagation of Juniperus procera Hoechst. Ex Endl. From seedling and screening of bioactive compounds in shoot and callus extract. BMC Plant Biol. 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Salih, A.M.; Al-Qurainy, F.; Khan, S.; Tarroum, M.; Nadeem, M.; Shaikhaldein, H.O.; Gaafar, A.-R.Z.; Alfarraj, N.S. Biosynthesis of zinc oxide nanoparticles using Phoenix dactylifera and their effect on biomass and phytochemical compounds in Juniperus procera. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Seca, A.; Pinto, D.; Silva, A.; Gupta, V. Bioactive Phytochemicals: Perspectives for Modern Medicine. 2015. Available online: https://www.abebooks.com/products/isbn/9789351307068/16068698672&cm_sp=snippet-_-srp1-_-PLP1 (accessed on 1 January 2020).
- Han, J.-W.; Shim, D.-W.; Shin, W.-Y.; Kim, M.-K.; Shim, E.-J.; Sun, X.; Koppula, S.; Kim, T.-J.; Kang, T.-B.; Lee, K.-H. Juniperus rigida Sieb. extract inhibits inflammatory responses via attenuation of TRIF-dependent signaling and inflammasome activation. J. Ethnopharmacol. 2016, 190, 91–99. [Google Scholar] [CrossRef]
- Patil, B.S.; Jayaprakasha, G.K.; Chidambara Murthy, K.; Vikram, A. Bioactive compounds: Historical perspectives, opportunities, and challenges. J. Agric. Food Chem. 2009, 57, 8142–8160. [Google Scholar] [CrossRef]
- Suroowan, S.; Llorent-Martínez, E.J.; Zengin, G.; Dall’Acqua, S.; Sut, S.; Buskaran, K.; Fakurazi, S.; Mahomoodally, M.F. Phytochemical Characterization, Anti-Oxidant, Anti-Enzymatic and Cytotoxic Effects of Artemisia verlotiorum Lamotte Extracts: A New Source of Bioactive Agents. Molecules 2022, 27, 5886. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Salih, A.M.; Al-Qurainy, F.; Nadeem, M.; Tarroum, M.; Khan, S.; Shaikhaldein, H.O.; Al-Hashimi, A.; Alfagham, A.; Alkahtani, J. Optimization method for phenolic compounds extraction from medicinal plant (Juniperus procera) and phytochemicals screening. Molecules 2021, 26, 7454. [Google Scholar] [CrossRef]
- Metivier, R.; Francis, F.; Clydesdale, F. Solvent extraction of anthocyanins from wine pomace. J. Food Sci. 1980, 45, 1099–1100. [Google Scholar] [CrossRef]
- Zhang, H.; Dolan, H.L.; Ding, Q.; Wang, S.; Tikekar, R.V. Antimicrobial action of octanoic acid against Escherichia coli O157: H7 during washing of baby spinach and grape tomatoes. Food Res. Int. 2019, 125, 108523. [Google Scholar] [CrossRef]
- Zhao, S.; Lin, G.; Duan, W.; Zhang, Q.; Huang, Y.; Lei, F. Design, synthesis, and antifungal activity of novel longifolene-derived diacylhydrazine compounds. ACS Omega 2021, 6, 9104–9111. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Martins, M.P.; Bitencourt, T.A.; Peres, N.T.; Rocha, C.H.; Rocha, F.M.; Neves-da-Rocha, J.; Lopes, M.E.; Sanches, P.R.; Bortolossi, J.C. Reassessing the use of undecanoic acid as a therapeutic strategy for treating fungal infections. Mycopathologia 2021, 186, 327–340. [Google Scholar] [CrossRef] [PubMed]
- AlShahrani, A.; AlShahrani, I.; Hosmani, J.; Togoo, R.A.; Sakinatulain, T.; Alam, T.; Hameed, M.S. Anticancer activity of Juniperus procera grown in southwestern region of Saudi Arabia on human oral squamous cell carcinoma cell lines. Pharmacogn. Mag. 2020, 16, 499. [Google Scholar]
- Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and anti-inflammatory activities of the sesquiterpene fraction from Annona reticulata L. bark. Nat. Prod. Res. 2012, 26, 1515–1518. [Google Scholar] [CrossRef]
- Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Stojanović-Radić, Z.Z.; Mihajilov-Krstev, T.; Jovanović, N.M.; Nikolić, B.M.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Essential oils of Pinus halepensis and P. heldreichii: Chemical composition, antimicrobial and insect larvicidal activity. Ind. Crops Prod. 2019, 140, 111702. [Google Scholar] [CrossRef]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.; da Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Al-Zubaidy, A.M.A. Exploring natural essential oil components and antibacterial activity of solvent extracts from twelve Perilla frutescens L. Genotypes. Arab. J. Chem. 2020, 13, 7390–7402. [Google Scholar] [CrossRef]
- Deans, S.; Svoboda, K.P. Antibacterial activity of summer savory (Satureja hortensis L.) essential oil and its constituents. J. Hortic. Sci. 1989, 64, 205–210. [Google Scholar] [CrossRef]
- Dharni, S.; Maurya, A.; Samad, A.; Srivastava, S.K.; Sharma, A.; Patra, D.D. Purification, characterization, and in vitro activity of 2,4-di-tert-butylphenol from Pseudomonas monteilii PsF84: Conformational and molecular docking studies. J. Agric. Food Chem. 2014, 62, 6138–6146. [Google Scholar] [CrossRef]
- Simoh, S.; Zainal, A. Chemical profiling of Curcuma aeruginosa Roxb. rhizome using different techniques of solvent extraction. Asian Pac. J. Trop. Biomed. 2015, 5, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.K.; Dutta, T.; Chattopadhyay, A.P.; Ghosh, N.N.; Chowdhury, S.; Mandal, V. Isolation of antimicrobial Tridecanoic acid from Bacillus sp. LBF-01 and its potentialization through silver nanoparticles synthesis: A combined experimental and theoretical studies. J. Nanostructure Chem. 2021, 11, 573–587. [Google Scholar] [CrossRef]
- Braga, Y.F.; Grangeiro, T.B.; Freire, E.A.; Lopes, H.L.; Bezerra, J.N.; Andrade-Neto, M.; Lima, M.A.S. Insecticidal activity of 2-tridecanone against the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). An. da Acad. Bras. de Ciências 2007, 79, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Henry, G.E.; Momin, R.A.; Nair, M.G.; Dewitt, D.L. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem. 2002, 50, 2231–2234. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Wang, S.; Cao, M.; Xiong, W.; Wu, L. (E)-9-Octadecenoic Acid Ethyl Ester Derived from Lotus Seedpod Ameliorates Inflammatory Responses by Regulating MAPKs and NF-κB Signalling Pathways in LPS-Induced RAW264. 7 Macrophages. Evid.-Based Complement. Altern. Med. 2022, 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, L.; Cui, L.; Liu, Z.; Wei, J.; Kang, W. Antioxidant and α-glucosidase inhibitiory activity of Cercis chinensis flowers. Food Sci. Hum. Wellness 2020, 9, 313–319. [Google Scholar] [CrossRef]
- Xiong, W.D.; Gong, J.; Xing, C. Ferruginol exhibits anticancer effects in OVCAR-3 human ovary cancer cells by inducing apoptosis, inhibition of cancer cell migration and G2/M phase cell cycle arrest Retraction in/10.3892/mmr. 2021.11868. Mol. Med. Rep. 2017, 16, 7013–7017. [Google Scholar] [CrossRef] [Green Version]
- Mikaia, A.; White, E.; Zaikin, V.; Zhu, D.; Sparkman, O.D.; Neta, P.; Zenkevich, I. NIST standard reference database 1A. In Standard Reference Data; NIST: Gaithersburg, MD, USA, 2014; Available online: https://www.nis.tgov/srd/nist-standard-reference-database-1a (accessed on 11 May 2014).
- Kuroda, K.; Fujiwara, T.; Hashida, K.; Imai, T.; Kushi, M.; Saito, K.; Fukushima, K. The accumulation pattern of ferruginol in the heartwood-forming Cryptomeria japonica xylem as determined by time-of-flight secondary ion mass spectrometry and quantity analysis. Ann. Bot. 2014, 113, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Imai, T.; Tanabe, K.; Kato, T.; Fukushima, K. Localization of ferruginol, a diterpene phenol, in Cryptomeria japonica heartwood by time-of-flight secondary ion mass spectrometry. Planta 2005, 221, 549–556. [Google Scholar] [CrossRef]
- Imai, T.; Tanabe, K.; Kato, T.; Fukushima, K. Determination of Ferruginol, a Heartwood Diterpene Phenol, in Cryptomeria japonica by Time-of-flight Secondary Ion Mass Spectrometry (TOF-SIMS). In 59th Appita Annual Conference and Exhibition: Incorporating, Proceedings of the 13th ISWFPC (International Symposium on Wood, Fibre and Pulping Chemistry), Auckland, New Zealand, 16–19 May 2005; Appita Inc.: Victoria, Australia, 2005; p. 153. [Google Scholar]
- Cody, R.B.; Fouquet, T.N.; Takei, C. Thermal desorption and pyrolysis direct analysis in real time mass spectrometry for qualitative characterization of polymers and polymer additives. Rapid Commun. Mass Spectrom. 2020, 34, e8687. [Google Scholar] [CrossRef]
- Saito, K.; Watanabe, Y.; Shirakawa, M.; Matsushita, Y.; Imai, T.; Koike, T.; Sano, Y.; Funada, R.; Fukazawa, K.; Fukushima, K. Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry. Plant J. 2012, 69, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
Compound Name | RT | Area | Mol. Wt. | Biological Activity |
---|---|---|---|---|
Octanoic acid | 12.042 | 283.354 | 158.131 | Antimicrobial [33]. |
Dodecane | 13.947 | 188.425 | 170.203 | - |
1,2,4-Metheno-1H-indene | 17.981 | 149.130 | 204.188 | - |
1H-Cycloprop[e]azulene | 18.485 | 233.181 | 204.188 | Analgesic and anti-inflammatory activities [37]. |
Longifolene | 18.897 | 2.433 | 204.188 | Antifungal [34]. |
Undecanoic acid | 19.028 | 164.046 | 200.178 | Antifungal [35]. |
Thunbergol | 19.429 | 104.044 | 290.261 | Antimicrobial activity [38]. |
Humulene | 19.852 | 84.054 | 204.188 | Anti-inflammatory [39]. |
(E,Z)-.alpha.-Farnesene | 20.173 | 648.868 | 204.188 | Antibacterial activity [40]. |
(1R,4R,5S)-1,8-Dimethyl-4-(prop-1-en-2-yl)spiro | 20.247 | 242.138 | 204.188 | - |
beta-Humulene | 20.55 | 214.483 | 204.188 | Antibacterial activity [41]. |
2,4-Di-tert-butylphenol | 20.762 | 160.545 | 206.167 | Antifungal [42]. |
Cycloisolongifolene, 8,9-dehydro- | 21.42 | 125.370 | 202.172 | Antibacterial and antifungal activities [43]. |
2,5-di-tert-Butyl-1,4-benzoquinone | 21.861 | 4.120 | 220.146 | - |
Tridecanoic acid | 23.102 | 22.647 | 228.209 | Anthelminthic, anti-inflammatory, antimicrobial, and anticancerous [44]. |
2-Tridecanone | 28.092 | 201.866 | 198.198 | Insecticidal activity [45]. |
cis-10-Heptadecenoic acid | 28.286 | 147.813 | 282.256 | Antioxidant [46]. |
Hexadecanoic acid | 29.654 | 167.380 | 284.272 | Anti-inflammatory [47]. |
9-Octadecenoic acid | 31.365 | 980.013 | 296.272 | Anti-inflammatory [48]. |
Nonadecanoic acid | 33.173 | 178.676 | 312.303 | - |
2-Phenanthrenol | 34.398 | 840.324 | 286.23 | Antimicrobial [48]. |
Docosanoic acid | 37.316 | 196.258 | 354.35 | Antioxidant [49]. |
No. | Experimental Mass | Calculated Mass | Mass Difference (mmu) | Formula | Unsaturation Degree | Possible Compound |
---|---|---|---|---|---|---|
1 | 285.22493 | 285.22184 | 3.09 | C20H29O | 6.5 | Ferruginol |
2 | 286.22961 | 286.22968 | –0.05 | C20H30O | 6.0 | |
3 | 287.23777 | 287.23749 | 0.28 | C20H31O | 5.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salih, A.M.; Al-Qurainy, F.; Tarroum, M.; Khan, S.; Nadeem, M.; Shaikhaldein, H.O.; Alansi, S. Phytochemical Compound Profile and the Estimation of the Ferruginol Compound in Different Parts (Roots, Leaves, and Seeds) of Juniperus procera. Separations 2022, 9, 352. https://doi.org/10.3390/separations9110352
Salih AM, Al-Qurainy F, Tarroum M, Khan S, Nadeem M, Shaikhaldein HO, Alansi S. Phytochemical Compound Profile and the Estimation of the Ferruginol Compound in Different Parts (Roots, Leaves, and Seeds) of Juniperus procera. Separations. 2022; 9(11):352. https://doi.org/10.3390/separations9110352
Chicago/Turabian StyleSalih, Abdalrhaman M., Fahad Al-Qurainy, Mohamed Tarroum, Salim Khan, Mohammad Nadeem, Hassan O. Shaikhaldein, and Saleh Alansi. 2022. "Phytochemical Compound Profile and the Estimation of the Ferruginol Compound in Different Parts (Roots, Leaves, and Seeds) of Juniperus procera" Separations 9, no. 11: 352. https://doi.org/10.3390/separations9110352
APA StyleSalih, A. M., Al-Qurainy, F., Tarroum, M., Khan, S., Nadeem, M., Shaikhaldein, H. O., & Alansi, S. (2022). Phytochemical Compound Profile and the Estimation of the Ferruginol Compound in Different Parts (Roots, Leaves, and Seeds) of Juniperus procera. Separations, 9(11), 352. https://doi.org/10.3390/separations9110352