Research Progress on Process-Intensified Water Treatment Applications
Abstract
:1. Introduction
2. Process-Intensified Treatment of Wastewaters
3. Process-Intensified Recovery of Proteins from Aqueous Media
3.1. Process Intensification System and Strategy: Novel Adsorbents
3.2. Process Intensification Achievements
4. Process-Intensified Decolorization of Wastewaters
4.1. Decolorization of Reactive Red 2 Dye
4.1.1. Process Intensification System and Strategy: Novel Adsorbent, Rotating Packed Bed
4.1.2. Process Intensification Achievements
4.2. Decolorization of Rhodamine-B Dye
4.2.1. Process Intensification System and Strategy: Novel Adsorbent, Ultrasound Polymerization, Process Integration, a Novel Hybrid Technique (Hydrogel Adsorption and Hydrodynamic Cavitation)
4.2.2. Process Intensification Achievements
4.3. Decolorization of Methylene Blue Dye (Spent-Tea Residue)
4.3.1. Process Intensification System and Strategy: Novel Adsorbent, Optimization for Maximum Process Efficiency
4.3.2. Process Intensification Achievements
4.4. Decolorization of Methyl Green Dye
4.4.1. Process Intensification System and Strategy: Novel Adsorbent, Process Integration, a Novel Hybrid Technique (Adsorption–Ultrafiltration Membrane)
4.4.2. Process Intensification Achievements
4.5. Decolorization of Methylene Blue Dye (Spent Bleaching Earth)
4.5.1. Process Intensification System and Strategy: Novel Adsorbent, Optimization (Carbonization and Dye Adsorption)
4.5.2. Process Intensification Achievements
4.6. Decolorization of Disperse Blue 56 Dye
4.6.1. Process Intensification System and Strategy: Novel Adsorbent
4.6.2. Process Intensification Achievements
4.7. Decolorization of Malachite Green Dye
4.7.1. Process Intensification System and Strategy: Novel Adsorbent, Microwave Treatment
4.7.2. Process Intensification Achievements
5. Process-Intensified Recovery of Heavy Metals and Rare Earth Elements from Aqueous Media
5.1. Adsorptive Removal of Ni(II) Ions
5.1.1. Process Intensification System and Strategy: Fixed Bed Adsorption under Subcritical Conditions
5.1.2. Process Intensification Achievements
5.2. Adsorptive Removal of Heavy Metals and Rare Earth Elements from Acidic Solutions
5.2.1. Process Intensification System and Strategy: Novel Adsorbent
5.2.2. Process Intensification Achievements
6. Process-Intensified Removal of Aromatic Hydrocarbon (p-Xylene) for Wastewater Treatment
6.1. Process Intensification System and Strategy: Process Integration, Novel Adsorbent, Molecular Simulations
6.2. Process Intensification Achievements
7. Process Intensification Results
8. Conclusions and Future Perspectives
Funding
Data Availability Statement
Conflicts of Interest
References
- Charpentier, J.-C. In the frame of globalization and sustainability, process intensification, a path to the future of chemical and process engineering (molecules into money). Chem. Eng. J. 2007, 134, 84–92. [Google Scholar] [CrossRef]
- Van Gerven, T.; Stankiewicz, A. Structure, Energy, Synergy, Time—The Fundamentals of Process Intensification. Ind. Eng. Chem. Res. 2009, 48, 2465–2474. [Google Scholar] [CrossRef]
- Boodhoo, K.; Harvey, A. (Eds.) Process Intensification for Green Chemistry: Engineering Solutions for Sustainable Chemical Processing, 1st ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Keil, F.J. Process intensification. Rev. Chem. Eng. 2017, 34, 135–200. [Google Scholar] [CrossRef] [Green Version]
- Kopac, T. Emerging applications of process intensification for enhanced separation and energy efficiency, environmentally friendly sustainable adsorptive separations: A review. Int. J. Energy Res. 2021, 45, 15839–15856. [Google Scholar] [CrossRef]
- Stankiewicz, A.I.; Moulijn, J.A. Process Intensification: Transforming Chemical Engineering. Chem. Eng. Prog. 2000, 96, 22–34. Available online: https://www.aiche.org/sites/default/files/docs/news/010022_cep_stankiewicz.pdf (accessed on 20 April 2022).
- Tian, Y.; Demirel, S.E.; Hasan, M.M.F.; Pistikopoulos, E.N. An overview of process systems engineering approaches for process intensification: State of the art. Chem. Eng. Process. Process Intensif. 2018, 133, 160–210. [Google Scholar] [CrossRef]
- Sikdar, S.K.; Sengupta, D.; Mukherjee, R. Engineering Methods for Decision Making on Relative Sustainability: Process Simulation Approaches. Meas. Prog. Towards Sustain. 2016, 129–152. [Google Scholar] [CrossRef]
- Ramshaw, C.; Arkley, K. Process intensification by miniature mass transfer. Process Engin. 1983, 64, 29–31. [Google Scholar]
- Ramshaw, C. Higee distillation—An example of process intensification. Chem. Eng. 1983, 389, 13–14. [Google Scholar]
- Law, R.; Ramshaw, C.; Reay, D. Process intensification—Overcoming impediments to heat and mass transfer enhancement when solids are present, via the IbD project. Therm. Sci. Eng. Progr. 2017, 1, 53–58. [Google Scholar] [CrossRef]
- Babi, D.K.; Cruz, M.S.; Gani, R. Fundamentals of Process Intensification: A Process Systems Engineering View. In Process Intensification in Chemical Engineering; Segovia-Hernandez, J.G., Bonilla-Petriciolet, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 7–33. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Park, L.K.; Yiacoumi, S.; Tsouris, C. Modular Chemical Process Intensification: A Review. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 359–380. [Google Scholar] [CrossRef] [PubMed]
- Cross, W.T.; Ramshaw, C. Process Intensification—Laminar flow—Heat transfer. Chem. Eng. Res. Des. 1986, 64, 293–301. [Google Scholar]
- Tsouris, C.; Porcelli, J.V. Process Intensification—Has its time finally come? Chem. Eng. Progr. 2003, 99, 50–55. [Google Scholar]
- Freund, H.; Sundmacher, K. Towards a methodology for the systematic analysis and design of efficient chemical processes—Part 1: From unit operations to elementary process functions. Chem. Eng. Process. Process Intensif. 2008, 47, 2051–2060. [Google Scholar] [CrossRef]
- European Roadmap for Process Intensification (ERPI). Creative Energy—Energy Transition. 2008. Available online: https://efce.info/efce_media/-p-531.pdf (accessed on 1 February 2022).
- Arizmendi-Sánchez, J.; Sharratt, P. Phenomena-based modularisation of chemical process models to approach intensive options. Chem. Eng. J. 2008, 135, 83–94. [Google Scholar] [CrossRef]
- Reay, D.; Ramshaw, C.; Harvey, A. Process Intensification: Engineering for Efficiency, Sustainability and Flexibility; Butterworth-Heinemann: Oxford, UK, 2008; ISBN 9780750689410. [Google Scholar]
- Becht, S.; Franke, R.; Geißelmann, A.; Hahn, H. An industrial view of process intensification. Chem. Eng. Process. Process Intensif. 2009, 48, 329–332. [Google Scholar] [CrossRef]
- Lutze, P.A.; Dada, E.; Gani, R.M.; Woodley, J. Heterogeneous catalytic distillation—A patent review. Recent. Pat. Chem. Eng. 2010, 3, 208–229. [Google Scholar] [CrossRef]
- Lutze, P.; Gani, R.; Woodley, J.M. Process intensification: A perspective on process synthesis. Chem. Eng. Process. Process Intensif. 2010, 49, 547–558. [Google Scholar] [CrossRef]
- Ponce-Ortega, J.M.; Al-Thubaiti, M.M.; El-Halwagi, M.M. Process intensification: New understanding and systematic approach. Chem. Eng. Process. Process Intensif. 2012, 53, 63–75. [Google Scholar] [CrossRef]
- Portha, J.-F.; Falk, L.; Commenge, J.-M. Local and global process intensification. Chem. Eng. Process. Process Intensif. 2014, 84, 1–13. [Google Scholar] [CrossRef]
- Baldea, M. From process integration to process intensification. Comput. Chem. Eng. 2015, 81, 104–114. [Google Scholar] [CrossRef]
- Yildirim, O.; Kiss, A.A.; Kenig, E.Y. Dividing wall columns in chemical process industry: A review on current activities. Sep. Purif. Technol. 2011, 80, 403–417. [Google Scholar] [CrossRef]
- Wang, H.; Mustaffar, A.; Phan, A.N.; Zivkovic, V.; Reay, D.; Law, R.; Boodhoo, K. A review of process intensification applied to solids handling. Chem. Eng. Process. Process Intensif. 2017, 118, 78–107. [Google Scholar] [CrossRef]
- Adamu, A.; Abegão, F.R.; Boodhoo, K. Process intensification technologies for CO2 capture and conversion—A review. BMC Chem. Eng. 2020, 2, 1–18. [Google Scholar] [CrossRef]
- Rizzi, V.; D’Agostino, F.; Gubitosa, J.; Fini, P.; Petrella, A.; Agostiano, A.; Semeraro, P.; Cosma, P. An Alternative Use of Olive Pomace as a Wide-Ranging Bioremediation Strategy to Adsorb and Recover Disperse Orange and Disperse Red Industrial Dyes from Wastewater. Separations 2017, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Alsaiari, N.S.; Osman, H.; Amari, A.; Tahoon, M.A. The Synthesis of Metal–Organic-Framework-Based Ternary Nanocomposite for the Adsorption of Organic Dyes from Aqueous Solutions. Magnetochemistry 2022, 8, 133. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Sajjad, S.; Saleem, J.; Alherbawi, M.; Mckay, G. A Review of the Removal of Dyestuffs from Effluents onto Biochar. Separations 2022, 9, 139. [Google Scholar] [CrossRef]
- Sah, M.K.; Edbey, K.; El-Hashani, A.; Almshety, S.; Mauro, L.; Alomar, T.S.; AlMasoud, N.; Bhattarai, A. Exploring the Biosorption of Methylene Blue Dye onto Agricultural Products: A Critical Review. Separations 2022, 9, 256. [Google Scholar] [CrossRef]
- El Mansouri, F.; Pelaz, G.; Morán, A.; Da Silva, J.C.G.E.; Cacciola, F.; El Farissi, H.; Tayeq, H.; Zerrouk, M.H.; Brigui, J. Efficient Removal of Eriochrome Black T Dye Using Activated Carbon of Waste Hemp (Cannabis sativa L.) Grown in Northern Morocco Enhanced by New Mathematical Models. Separations 2022, 9, 283. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Shahzad, K.; Wattoo, M.A.; Hussain, T.; Tufail, M.K.; Shah, S.S.A.; Rehman, A.U. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324. [Google Scholar] [CrossRef]
- Andrade-Guel, M.; Cabello-Alvarado, C.; Bartolo-Pérez, P.; Medellin-Banda, D.I.; Ávila-Orta, C.A.; Cruz-Ortiz, B.; Espinosa-Muñoz, A.; Pliego, G.C. Surface modification of TiO2/ZnO nanoparticles by organic acids with enhanced methylene blue and rhodamine B dye adsorption properties. RSC Adv. 2022, 12, 28494–28504. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.A.; Najam, T.; Jabeen, S.; Wattoo, M.A.; Bashir, M.S.; Shah, S.S.A.; Rehman, A.U. Facile synthesis of Tri-metallic layered double hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and methyl orange from water. Inorg. Chem. Commun. 2022, 145, 110008. [Google Scholar] [CrossRef]
- Ling, T.C.; Lyddiatt, A. Process intensification of fluidized bed dye-ligand adsorption of G3PDH from unclarified disrupted yeast: A case study of the performance of a high-density steel—Agarose pellicular adsorbent. Protein Expr. Purif. 2005, 42, 160–165. [Google Scholar] [CrossRef]
- Kopac, T.; Bozgeyik, K.; Flahaut, E. Adsorption and interactions of the bovine serum albumin-double walled carbon nanotube system. J. Mol. Liq. 2018, 252, 1–8. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chen, S.-C. Decolorization of Reactive Red 2 in aqueous solutions using RPB-prepared nanoscale zero-valent iron. Chem. Eng. Process. Process Intensif. 2017, 119, 1–6. [Google Scholar] [CrossRef]
- Bethi, B.; Manasa, V.; Srinija, K.; Sonawane, S.H. Intensification of Rhodamine-B dye removal using hydrodynamic cavitation coupled with hydrogel adsorption. Chem. Eng. Process. Process Intensif. 2018, 134, 51–57. [Google Scholar] [CrossRef]
- Salehi, E.; Askari, M.; Velashjerdi, M.; Arab, B. Phosphoric acid-treated Spent Tea Residue Biochar for Wastewater Decoloring: Batch Adsorption Study and Process Intensification using Multivariate Data-based Optimization. Chem. Eng. Process. Process Intensif. 2020, 158, 108170. [Google Scholar] [CrossRef]
- Alardhi, S.M.; Albayati, T.M.; Alrubaye, J.M. A hybrid adsorption membrane process for removal of dye from synthetic and actual wastewater. Chem. Eng. Process. Process Intensif. 2020, 157, 108113. [Google Scholar] [CrossRef]
- Merikhy, A.; Heydari, A.; Eskandari, H.; Ghahraman-Rozegar, F. Carbonized spent bleaching earth as a low-cost adsorbent: A facile revalorization strategy via response surface methodology. Chem. Eng. Process. Process Intensif. 2020, 158, 108167. [Google Scholar] [CrossRef]
- Mohammad, J.; Feyzi, M.; Joshaghani, M. Synthesis of ZnO-magnetic/ZSM-5 and its application for removal of disperse Blue 56 from contaminated water. Chem. Eng. Process. Process Intensif. 2020, 153, 107969. [Google Scholar] [CrossRef]
- Hijab, M.; Parthasarathy, P.; Mackey, H.R.; Al-Ansari, T.; McKay, G. Minimizing adsorbent requirements using multi-stage batch adsorption for malachite green removal using microwave date-stone activated carbons. Chem. Eng. Process. Process Intensif. 2021, 167, 108318. [Google Scholar] [CrossRef]
- Reske, G.D.; da Rosa, B.C.; Visioli, L.J.; Dotto, G.L.; De Castilhos, F. Intensification of Ni(II) adsorption in a fixed bed column through subcritical conditions. Chem. Eng. Process. Process Intensif. 2020, 149, 107863. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Fila, D.; Hubicki, Z. Evaluation of possible use of the macroporous ion exchanger in the adsorption process of rare earth elements and heavy metal ions from spent batteries solutions. Chem. Eng. Process. Process Intensif. 2019, 147, 107767. [Google Scholar] [CrossRef]
- Ye, C.; Lu, P.; Jiang, X.; Wu, C.; Qiu, T.; Li, Y. Synthesis and adsorption behavior of a magnetic ZSM zeolite for the selective removal of p-xylene from complex aqueous media. Chem. Eng. Process. Process Intensif. 2020, 153, 107961. [Google Scholar] [CrossRef]
- Xu, X.; Mao, X.; Wang, Y.; Li, D.; Du, Z.; Wu, W.; Jiang, L.; Yang, J.; Li, J. Study on the interaction of graphene oxide-silver nanocomposites with bovine serum albumin and the formation of nanoparticle-protein corona. Int. J. Biol. Macromol. 2018, 116, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Mutalik, S.P.; Pandey, A.; Mutalik, S. Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. Int. J. Biol. Macromol. 2020, 151, 136–158. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Wang, C.; Gong, C.; McClements, D.J.; Jin, Z.; Wang, J. Advances in research on preparation, characterization, interaction with proteins, digestion and delivery systems of starch-based nanoparticles. Int. J. Biol. Macromol. 2020, 152, 117–125. [Google Scholar] [CrossRef]
- Raychaudhuri, R.; Pandey, A.; Das, S.; Nannuri, S.H.; Joseph, A.; George, S.D.; Vincent, A.P.; Mutalik, S. Nanoparticle impregnated self-supporting protein gel for enhanced reduction in oxidative stress: A molecular dynamics insight for lactoferrin-polyphenol interaction. Int. J. Biol. Macromol. 2021, 189, 100–113. [Google Scholar] [CrossRef]
- Mishra, R.K.; Ahmad, A.; Vyawahare, A.; Alam, P.; Khan, T.H.; Khan, R. Biological effects of formation of protein corona onto nanoparticles. Int. J. Biol. Macromol. 2021, 175, 1–18. [Google Scholar] [CrossRef]
- Kopac, T.; Bozgeyik, K. Equilibrium, Kinetics, and Thermodynamics of Bovine Serum Albumin Adsorption on Single-Walled Carbon Nanotubes. Chem. Eng. Commun. 2016, 203, 1198–1206. [Google Scholar] [CrossRef]
- Bozgeyik, K.; Kopac, T. Adsorption Properties of Arc Produced Multi Walled Carbon Nanotubes for Bovine Serum Albumin. Int. J. Chem. React. Eng. 2016, 14, 549–558. [Google Scholar] [CrossRef]
- Bozgeyik, K.; Kopac, T. Adsorption of Bovine Serum Albumin onto Metal Oxides: Adsorption Equilibrium and Kinetics onto Alumina and Zirconia. Int. J. Chem. React. Eng. 2010, 8. [Google Scholar] [CrossRef]
- Kopac, T. Hydrogen storage characteristics of bio-based porous carbons of different origin: A comparative review. Int. J. Energy Res. 2021, 45, 20497–20523. [Google Scholar] [CrossRef]
Technology | System Adsorbate/Adsorbent | Process Intensification | Reference | |
---|---|---|---|---|
Technique | Parameter | |||
Adsorption
|
|
|
| [37] |
Adsorption
|
|
|
| [38] |
Adsorption
|
|
|
| [39] |
Adsorption
|
|
|
| [40] |
Adsorption
|
|
|
| [41] |
Adsorption
|
|
|
| [42] |
Adsorption
|
|
|
| [43] |
Adsorption
|
|
|
| [44] |
Adsorption
|
|
|
| [45] |
Adsorption
|
|
|
| [46] |
Adsorption/desorption
|
|
|
| [47] |
Adsorption/desorption
|
|
|
| [48] |
Study | Major Findings | Process Intensification Achieved | Reference |
---|---|---|---|
|
|
| [37] |
|
|
| [38] |
|
|
| [39] |
|
|
| [40] |
|
|
| [41] |
|
|
| [42] |
|
|
| [43] |
|
|
| [44] |
|
|
| [45] |
|
|
| [46] |
|
|
| [47] |
|
|
| [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopac, T. Research Progress on Process-Intensified Water Treatment Applications. Separations 2022, 9, 353. https://doi.org/10.3390/separations9110353
Kopac T. Research Progress on Process-Intensified Water Treatment Applications. Separations. 2022; 9(11):353. https://doi.org/10.3390/separations9110353
Chicago/Turabian StyleKopac, Turkan. 2022. "Research Progress on Process-Intensified Water Treatment Applications" Separations 9, no. 11: 353. https://doi.org/10.3390/separations9110353
APA StyleKopac, T. (2022). Research Progress on Process-Intensified Water Treatment Applications. Separations, 9(11), 353. https://doi.org/10.3390/separations9110353