TLR4/NFκB-Mediated Anti-Inflammatory and Antioxidative Effect of Hexanic and Ethanolic Extracts of Curcuma longa L. in Buffalo Mammary Epithelial Cells
Abstract
:1. Introduction
2. Material and Methods
2.1. Collection of Plant Material and Preparation of Extracts
2.2. Chemicals and Cell Line
2.3. Free Radical Scavenging Activity (DPPH Assay)
2.4. MTT Assay
2.5. Preparation of LPS
2.6. Protocol for Treatment with Different Extracts
2.7. Total RNA Extraction
2.7.1. cDNA Synthesis
2.7.2. qRT PCR
2.8. Gas Chromatography-Mass Spectrometry
2.9. Statistics
3. Results
3.1. Cytotoxicity/MTT Assay
3.2. DPPH Assay of Extracts
3.3. Effect of HECl and EECl on TLR4 Expression
3.4. Effect of HECl and EECl on Inflammatory Gene Expression
3.5. Effect of HECl and EECl NRF2 Expression
3.6. GC-MS/MS Chromatogram Analysis
4. Discussion
4.1. Anti-Inflammatory Effects of C. longa Extracts
4.2. Anti-Oxidative Effects of C. longa Extracts
4.2.1. RAS Activity of the Extracts
4.2.2. Effect on NRF-2 Gene Action
4.3. Phytoconstituents in C. longa Extracts
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pascu, C.; Herman, V.; Iancu, I.; Costinar, L. Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania. Antibiotics 2022, 11, 57. [Google Scholar] [CrossRef]
- Bhosale, R.R.; Osmani, R.A.; Ghodake, P.P.; Shaikh, S.M.; Chavan, S.R. Mastitis: An Intensive Crisis in Veterinary Science. Int. J. Pharma Res. Health Sci. 2014, 2, 96–103. [Google Scholar]
- Oliveira, L.; Hulland, C.; Ruegg, P.L. Characterization of Clinical Mastitis Occurring in Cows on 50 Large Dairy Herds in Wisconsin. J. Dairy Sci. 2013, 96, 7538–7549. [Google Scholar] [CrossRef] [PubMed]
- Lebda, M.A.; Elmassry, I.H.; Taha, N.M.; Elfeky, M.S. Nanocurcumin Alleviates Inflammation and Oxidative Stress in LPS-Induced Mastitis via Activation of Nrf2 and Suppressing TLR4-Mediated NF-ΚB and HMGB1 Signaling Pathways in Rats. Environ. Sci. Pollut. Res. 2022, 29, 8294–8305. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Fang, H.; Shen, J.; Jin, Y.; Zhao, Y.; Wang, R.; Fu, Y.; Tian, Y.; Yu, H.; Zhang, J. Curcumin Alleviates LPS-Induced Oxidative Stress, Inflammation and Apoptosis in Bovine Mammary Epithelial Cells via the NFE2L2 Signaling Pathway. Toxins 2021, 13, 208. [Google Scholar] [CrossRef]
- Raj, A.; Kulangara, V.; Vareed, T.P.; Melepat, D.P.; Chattothayil, L.; Chullipparambil, S. Variations in the Levels of Acute-Phase Proteins and Lactoferrin in Serum and Milk during Bovine Subclinical Mastitis. J. Dairy Res. 2021, 88, 321–325. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Samanta, I. Antimicrobial Resistance in Livestock Sector: Status and Way Forward. Indian J. Comp. Microbiol. Immunol. Infect. Dis. 2022, 43, 34–41. [Google Scholar] [CrossRef]
- Suriyasathaporn, W.; Chupia, V.; Sing-Lah, T.; Wongsawan, K.; Mektrirat, R.; Chaisri, W. Increases of Antibiotic Resistance in Excessive Use of Antibiotics in Smallholder Dairy Farms in Northern Thailand. Asian-Australas. J. Anim. Sci. 2012, 25, 1322–1328. [Google Scholar] [CrossRef]
- Nair, M.N.; Sk, K.; Punniamurthy, N. Ethno-Veterinary Practices for Animal Health and the Associated Medicinal Plants from 24 Locations in 10 States of India. Res. J. Vet. Sci. 2017, 3, 16–25. [Google Scholar]
- Danilov, M.S.; Valitova, N.V.; Vorobyov, A.L.; Asangaliev, E.A.; Kalachev, A.A. Needles of Abies Sibirica in the Treatment of Subclinical Mastitis in Cows. J. Livest. Sci. 2019, 10, 9–18. [Google Scholar] [CrossRef]
- Khateeb, A.; Khandi, S.; Bhadwal, M.; Dar, A.; Wani, S.; Bafanda, R. Indigenous Technical Knowledge Practices Followed by Pastoralists for the Treatment of Livestock Diseases in Hills of Jammu & Kashmir State in India. Curr. J. Appl. Sci. Technol. 2017, 24, 1–936739. [Google Scholar] [CrossRef]
- Cheng, W.N.; Han, S.G. Bovine Mastitis: Risk Factors, Therapeutic Strategies, and Alternative Treatments-A Review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef] [PubMed]
- Berry, A.; Collacchi, B.; Masella, R.; Varì, R.; Cirulli, F. Curcuma Longa, the “Golden Spice” to Counteract Neuroinflammaging and Cognitive Decline—What Have We Learned and What Needs to Be Done. Nutrients 2021, 13, 1519. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Filho, J.G.; de Almeida, M.J.; Sousa, T.L.; dos Santos, D.C.; Egea, M.B. Bioactive Compounds of Turmeric (Curcuma longa L.). In Bioactive Compounds in Underutilized Vegetables and Legumes; Murthy, H.N., Paek, K.Y., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Switzerland, 2021; pp. 297–318. ISBN 978-3-030-57415-4. [Google Scholar]
- Yang, Q.-Q.; Cheng, L.-Z.; Zhang, T.; Yaron, S.; Jiang, H.-X.; Sui, Z.-Q.; Corke, H. Phenolic Profiles, Antioxidant, and Antiproliferative Activities of Turmeric (Curcuma longa). Ind. Crops Prod. 2020, 152, 112561. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 01021. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Sankar, P.; Kalaivanan, R.; Telang, A.G. Ameliorative Effect of Nanocurcumin on Staphylococcus Aureus-Induced Mouse Mastitis by Oxidative Stress Suppression. Inorg. Nano-Met. Chem. 2022, 52, 1–9. [Google Scholar] [CrossRef]
- Waghmare, S.P.; Kolte, A.; Ravikanth, K.; Thakur, A. Application of Herbal Teat Dip Mastidip Liquid in Subclinically Mastitic Animals and Its Role in Further Prevention Of mastitis. Int. J. Agric. Sci. Vet. Med. 2013, 1, 43–49. [Google Scholar]
- Hadiya, K.; Yadav, V.; Borthakur, A.; Ravikanath, K.; Maini, S. Efficacy Evaluation of Mastilep Gel in Sub-Clinical Mastitis in Cattle. Int. J. Agri. Innov. Res. 2017, 5, 748–750. [Google Scholar]
- Mukherjee, R.; Jadhav, R.K.; Sharma, N.; Sahu, B.D.; De, U.K. Milk Leukocyte Adhesion Molecules in Response to Curcuma Longa Plus α-Tocopherol and Selenium in Mastitic Riverine Buffaloes. Int. Buffalo Inf. Cent. (IBIC) Buffalo Bull. 2014, 33, 215. [Google Scholar]
- Fu, Y.; Gao, R.; Cao, Y.; Guo, M.; Wei, Z.; Zhou, E.; Li, Y.; Yao, M.; Yang, Z.; Zhang, N. Curcumin Attenuates Inflammatory Responses by Suppressing TLR4-Mediated NF-ΚB Signaling Pathway in Lipopolysaccharide-Induced Mastitis in Mice. Int. Immunopharmacol. 2014, 20, 54–58. [Google Scholar] [CrossRef]
- Tuntiyasawasdikul, S.; Sripanidkulchai, B. Development and Clinical Trials on Anti-Inflammatory Effect of Transdermal Patch Containing a Combination of Kaempferia Parviflora and Curcuma Longa Extracts. J. Drug Deliv. Sci. Technol. 2022, 68, 103093. [Google Scholar] [CrossRef]
- Anand, V.; Dogra, N.; Singh, S.; Kumar, S.N.; Jena, M.K.; Malakar, D.; Dang, A.K.; Mishra, B.P.; Mukhopadhyay, T.K.; Kaushik, J.K.; et al. Establishment and Characterization of a Buffalo (Bubalus Bubalis) Mammary Epithelial Cell Line. PLoS ONE 2012, 7, e40469. [Google Scholar] [CrossRef] [Green Version]
- Padmapriya, R.; Ashwini, S.; Raveendran, R. In vitro antioxidant and cytotoxic potential of different parts of Tephrosia purpurea. Res. Pharm. Sci. 2017, 12, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. A Single-Step Method for the Simultaneous Preparation of DNA, RNA, and Protein from Cells and Tissues. Cold Spring Harb. Protoc. 2006, 2006, pdb.prot4056. [Google Scholar] [CrossRef]
- Mohammadi, K.; Sani, M.A.; Azizi-Lalabadi, M.; McClements, D.J. Recent Progress in the Application of Plant-Based Colloidal Drug Delivery Systems in the Pharmaceutical Sciences. Adv. Colloid Interface Sci. 2022, 307, 102734. [Google Scholar] [CrossRef]
- Chitra, K.; Arivoli, S. The Use of Ethnoveterinary Medicine in Treating Cattle’s Milking Diseases. World J. Adv. Res. Rev. 2022, 14, 75–79. [Google Scholar] [CrossRef]
- Girma, A.; Tamir, D. Prevalence of Bovine Mastitis and Its Associated Risk Factors among Dairy Cows in Ethiopia during 2005–2022: A Systematic Review and Meta-Analysis. Vet. Med. Int. 2022, 2022, 1–19. [Google Scholar] [CrossRef]
- Jiang, M.; Lv, Z.; Huang, Y.; Cheng, Z.; Meng, Z.; Yang, T.; Yan, Q.; Lin, M.; Zhan, K.; Zhao, G. Quercetin Alleviates Lipopolysaccharide-Induced Inflammatory Response in Bovine Mammary Epithelial Cells by Suppressing TLR4/NF-ΚB Signaling Pathway. Front. Vet. Sci. 2022, 9, 915726. [Google Scholar] [CrossRef]
- Liu, C.; Tang, X.; Zhang, W.; Li, G.; Chen, Y.; Guo, A.; Hu, C. 6-Bromoindirubin-3′-Oxime Suppresses LPS-Induced Inflammation via Inhibition of the TLR4/NF-ΚB and TLR4/MAPK Signaling Pathways. Inflammation 2019, 6, 2192–2204. [Google Scholar] [CrossRef]
- Kang, S.; Lee, J.S.; Lee, H.C.; Petriello, M.C.; Kim, B.Y.; Do, J.T.; Lim, D.-S.; Lee, H.G.; Han, S.G. Phytoncide Extracted from Pinecone Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells. J. Microbiol. Biotechnol. 2016, 26, 579–587. [Google Scholar] [CrossRef]
- Phondani, P.C.; Maikhuri, R.K.; Kala, C.P. Ethnoveterinary Uses of Medicinal Plants among Traditional Herbal Healers in Alaknanda Catchment of Uttarakhand, India. Afr. J. Tradit. Complement. Altern. Med. 2010, 7, 195–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natesan, N.P.; Nair, B.N. A Decade of Clinical Research and Applications of Ethnoveterinary Knowledge in India–the Pragmatic Way of Facilitating Medicinal Plants to Replace Synthetics in Animal Health and Production. Planta Med. 2016, 82, SL48. [Google Scholar]
- Sedky, D.; Mohamed, A.M.; Fouad, R.; Khafagi, M.H.M.; Omer, E.A.; Elbayoumy, M.K.; Effat, M.M.; Abou-Zeina, H.A.A. Assessment of Phytochemical, Antioxidant and Antibacterial Activity of Balanites Aegyptiaca and Curcuma Longa against Some Bacterial Pathogens Isolated from Dairy Cow Infected with Mastitis. Adv. Anim. Vet. Sci. 2022, 10, 160–169. [Google Scholar] [CrossRef]
- Ghadiri, S.; Spalenza, V.; Dellafiora, L.; Badino, P.; Barbarossa, A.; Dall’Asta, C.; Nebbia, C.; Girolami, F. Modulation of Aflatoxin B1 Cytotoxicity and Aflatoxin M1 Synthesis by Natural Antioxidants in a Bovine Mammary Epithelial Cell Line. Toxicol. In Vitro 2019, 57, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Tanikawa, T.; Kitamura, M.; Hayashi, Y.; Yokogawa, T.; Inoue, Y. Curcumae Longae Rhizoma and Saussureae Radix Inhibit Nitric Oxide Production and Cannabinoid Receptor 2 Down-Regulation. In Vivo 2022, 36, 227–232. [Google Scholar] [CrossRef]
- Sinjari, B.; Pizzicannella, J.; D’Aurora, M.; Zappacosta, R.; Gatta, V.; Fontana, A.; Trubiani, O.; Diomede, F. Curcumin/Liposome Nanotechnology as Delivery Platform for Anti-Inflammatory Activities via NFkB/ERK/PERK Pathway in Human Dental Pulp Treated with 2-Hydroxyethyl Methacrylate (HEMA). Front. Physiol. 2019, 10, 633. [Google Scholar] [CrossRef]
- Rezayat, S. The Protective Effect of Nano-Curcumin in Experimental Model of Acute Pancreatitis: The Involvement of TLR4/NF-KB Pathway. Nanomed. J. 2018, 5, 138–143. [Google Scholar]
- Souri, E.; Amin, G.; Farsam, H.; Barazandeh, T.M. Screening of antioxidant activity and phenolic content of 24 medicinal plants. J. Pharm. Sci. 2008, 16, 83–87. [Google Scholar]
- Kodjio, N.; Atsafack, S.S.; Fodouop, S.P.; Kuiate, J.R.; Gatsing, D. In vitro antisalmonellal and antioxidant activities of extracts and fractions of Curcuma longa L. rhizomes (Zingiberaceae). Int. J. Biochem. Res. Rev. 2016, 11, 1–14. [Google Scholar] [CrossRef]
- Tanvir, E.M.; Hossen, M.; Hossain, M.; Afroz, R.; Gan, S.H.; Khalil, M.; Karim, N. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J. Food Qual. 2017, 2017, 8471785. [Google Scholar] [CrossRef] [Green Version]
- Ashrafizadeh, M.; Ahmadi, Z.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection against Oxidative Injury. Curr. Mol. Med. 2020, 20, 116–133. [Google Scholar] [PubMed]
- Dai, C.; Li, B.; Zhou, Y.; Li, D.; Zhang, S.; Li, H.; Xiao, X.; Tang, S. Curcumin Attenuates Quinocetone Induced Apoptosis and Inflammation via the Opposite Modulation of Nrf2/HO-1 and NF-KB Pathway in Human Hepatocyte L02 Cells. Food Chem. Toxicol. 2016, 95, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Sahin, K.; Pala, R.; Tuzcu, M.; Ozdemir, O.; Orhan, C.; Sahin, N.; Juturu, V. Curcumin Prevents Muscle Damage by Regulating NF-ΚB and Nrf2 Pathways and Improves Performance: An in Vivo Model. J. Inflamm. Res. 2016, 9, 147–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Chang, Y.; Huang, S.; Xiao, L.; Zhou, W.; Zhang, L.; Li, C.; Zhou, R.; Tang, J.; Lin, L. Aromatic-Turmerone Attenuates LPS-Induced Neuroinflammation and Consequent Memory Impairment by Targeting TLR4-Dependent Signaling Pathway. Mol. Nutr. Food Res. 2018, 62, 1700281. [Google Scholar] [CrossRef]
- Park, S.Y.; Jin, M.L.; Kim, Y.H.; Kim, Y.; Lee, S.J. Anti-Inflammatory Effects of Aromatic-Turmerone through Blocking of NF-ΚB, JNK, and P38 MAPK Signaling Pathways in Amyloid β-Stimulated Microglia. Int. Immunopharmacol. 2012, 14, 13–20. [Google Scholar] [CrossRef]
- Devkota, L.; Rajbhandari, M. Composition of Essential Oils in Turmeric Rhizome. Nepal J. Sci. Technol. 2015, 16, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Ayati, Z.; Ramezani, M.; Amiri, M.S.; Moghadam, A.T.; Rahimi, H.; Abdollahzade, A.; Sahebkar, A.; Emami, S.A. Ethnobotany, Phytochemistry and Traditional Uses of Curcuma Spp. and Pharmacological Profile of Two Important Species (C. longa and C. zedoaria): A Review. Curr. Pharm. Des. 2019, 25, 871–935. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; Ambriz-Pére, D.L.; Leyva-López, N.; Castillo-López, R.I.; Heredia, J.B. Review: Dietary Phenolic Compounds, Health Benefits and Bioaccessibility. Arch. Latinoam. Nutr. 2016, 66, 87–100. [Google Scholar]
S. No. | Primer Name | Primer Sequence | Amplicon Size | Tm (°C) |
---|---|---|---|---|
1. | β-Actin/ ACTB | Fwd: CCCTGGAGAAGAGCTACGAG Rev: GTAGTTTCGTGAATGCCGCAG | 160 bp | 60 |
2. | TLR4 | Fwd: TCCCCGACAACATCCCCATA Rev: GGCCCTGAAATGTGTCGTCT | 159 bp | 60 |
3. | NFκB | Fwd: CAGCCTGGTGGGAAAACACT Rev: CAGGCATCTGTCATTCGTGC | 150 bp | 65 |
4. | IL-6 | Fwd: GCTGAATCTTCCAAAAATGGAGG Rev: GCTTCAGGATCTGGATCAGTG | 200 bp | 65 |
5. | TNFα | Fwd: CCACGTTGTAGCCGACATC Rev: CCCTGAAGAGGACCTGTGAG | 155 bp | 65 |
6. | NRF2 | Fwd: CATGGCATCACCAGACCACT Rev: CGGTGTTTTGGGACCCTTCT | 130 bp | 63 |
S. No. | Compound Name | Molecular Formula | Molecular Weight (g/mol) | RT | Area Sum (%) | Compound Subclass | Common Plants |
---|---|---|---|---|---|---|---|
1. | Atlantone | C15H22O | 218.33 | 11.4 | 0.37 | Sesqueterpenoid | Cedrus deodara, Curcuma |
2. | dihydro-ar-Turmerone | C15H20O | 218.339 | 12.45 | 0.77 | Sesqueterpenoid | C. longa, Peltophorum dasyrachis |
2. | Ar-Turmerone | C15H20O | 218.339 | 13.33 | 24.58 | Sesqueterpenoid | C. longa, Peltophorum dasyrachis |
3. | Tumerone | C15H22O | 218.33 | 13.3 | 7.20 | Sesqueterpenoid | C. longa |
4. | beta-Turmerone) (4-methylidenecyclohex-2-en-1-yl) hept-2-en-4-one | C15H22O | 218.33 | 14.03 | 11.7 | Sesqueterpenoid | Gundelia tournefortii, Turmeric |
5. | Atlantone | C15H22O | 218.33 | 15.51 | 2.92 | Sesqueterpenoid | Cedrus deodara, Curcuma |
S. No. | Compound Name | Molecular Formula | Molecular Weight (g/mol) | RT | Area Sum (%) | Compound Subclass | Common Plants |
---|---|---|---|---|---|---|---|
1. | Guaiacol (2-Hydroxyanisole Phenol, 2-methoxy) | C7H8O2 | 124.137 | 4.336 | 2.58 | Phenol | Solanum torvum, Guaiacum officinale |
2. | dihydro-ar-Turmerone | C15H20O | 218.339 | 13.2 | 26.84 | Sesqueterpenoid | C. longa, Peltophorum dasyrachis |
3. | Tumerone | C15H22O | 218.33 | 13.3 | 7.39 | Sesqueterpenoid | C. longa |
4. | Curlone | C15H22O | 218.33 | 13.9 | 12.67 | Sesqueterpenoid | C. longa, Karungkuravai” rice medicinal variety |
5. | Atlantone | C15H22O | 218.33 | 15.36 | 2.22 | Sesqueterpenoid | Cedrus deodara, Curcuma |
6. | Ethyl ferulate/Ethyl 4′-hydroxy-3′-methoxycinnamate | C12H14O4 | 222.24 | 18.18 | 0.99 | Polyphenol | Stemona tuberosa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, I.; Rashid, S.M.; Shubeena, S.; Hussain, I.; Ahmad, S.B.; Mir, M.U.R.; Alshehri, S.; Bukhari, S.I.; Mir, T.M.; Rehman, M.U. TLR4/NFκB-Mediated Anti-Inflammatory and Antioxidative Effect of Hexanic and Ethanolic Extracts of Curcuma longa L. in Buffalo Mammary Epithelial Cells. Separations 2022, 9, 414. https://doi.org/10.3390/separations9120414
Amin I, Rashid SM, Shubeena S, Hussain I, Ahmad SB, Mir MUR, Alshehri S, Bukhari SI, Mir TM, Rehman MU. TLR4/NFκB-Mediated Anti-Inflammatory and Antioxidative Effect of Hexanic and Ethanolic Extracts of Curcuma longa L. in Buffalo Mammary Epithelial Cells. Separations. 2022; 9(12):414. https://doi.org/10.3390/separations9120414
Chicago/Turabian StyleAmin, Insha, Shahzada Mudasir Rashid, Sheikh Shubeena, Ishraq Hussain, Sheikh Bilal Ahmad, Manzoor Ur Rahman Mir, Sultan Alshehri, Sarah I. Bukhari, Tahir Maqbool Mir, and Muneeb U. Rehman. 2022. "TLR4/NFκB-Mediated Anti-Inflammatory and Antioxidative Effect of Hexanic and Ethanolic Extracts of Curcuma longa L. in Buffalo Mammary Epithelial Cells" Separations 9, no. 12: 414. https://doi.org/10.3390/separations9120414
APA StyleAmin, I., Rashid, S. M., Shubeena, S., Hussain, I., Ahmad, S. B., Mir, M. U. R., Alshehri, S., Bukhari, S. I., Mir, T. M., & Rehman, M. U. (2022). TLR4/NFκB-Mediated Anti-Inflammatory and Antioxidative Effect of Hexanic and Ethanolic Extracts of Curcuma longa L. in Buffalo Mammary Epithelial Cells. Separations, 9(12), 414. https://doi.org/10.3390/separations9120414