Optimized Isolation of Safranal from Saffron by Solid-Phase Microextraction (SPME) and Rotatable Central Composite Design-Response Surface Methodology (RCCD-RSM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Saffron Samples
2.2. Experimental Design
2.3. Isolation and Analysis of Volatile Compounds
3. Results and Discussion
3.1. Evaluation of Saffron Volatile Compounds
3.2. Model Fitting
3.3. Response Analysis and Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winterhalter, P.; Straubinger, M. SAFFRON—Renewed interest in an ancient spice. Food Rev. Int. 2000, 16, 39–59. [Google Scholar] [CrossRef]
- Saffron Prices. Available online: https://saffronprices.com/saffron-prices-2/ (accessed on 19 January 2022).
- Saffron Prices (Update 2022). Available online: https://kohanrishe.net/saffron-price/ (accessed on 19 January 2022).
- Saravanan, K.; Egbuna, C.; Averal, H.I.; Kannan, S.; Elavarasi, S.; Bahadur, B. (Eds.) Drug Development for Cancer and Diabetes: A Path to 2030, 1st ed.; Apple Academic Press: Palm Bay, FL, USA, 2020. [Google Scholar]
- Tarantilis, P.A.; Polissiou, M.G. Isolation and Identification of the Aroma Components from Saffron (Crocus sativus). J. Agric. Food Chem. 1997, 45, 459–462. [Google Scholar] [CrossRef]
- Carmona, M.; Zalacain, A.; Salinas, M.R.; Alonso, G.L. A New Approach to Saffron Aroma. Crit. Rev. Food Sci. Nutr. 2007, 47, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Sharafzadeh, S. Saffron: A Concise Review of Researches. Adv. Environ. Biol. 2011, 5, 1617–1621. [Google Scholar]
- Jalali-Heravi, M.; Parastar, H.; Ebrahimi-Najafabadi, H. Characterization of Volatile Components of Iranian Saffron Using Factorial-Based Response Surface Modeling of Ultrasonic Extraction Combined with Gas Chromatography-Mass Spectrometry Analysis. J. Chromatogr. A 2009, 1216, 6088–6097. [Google Scholar] [CrossRef] [PubMed]
- Feyzi, S.; Varidi, M.; Housaindokht, M.R.; Es’haghi, Z. Innovative Method for Analysis of Safranal under Static and Dynamic Conditions through Combination of HS-SPME-GC Technique with Mathematical Modelling. Phytochem. Anal. 2020, 31, 564–574. [Google Scholar] [CrossRef]
- Rezaee, R.; Hosseinzadeh, H. Safranal: From an Aromatic Natural Product to a Rewarding Pharmacological Agent. Iran J. Basic Med. Sci. 2013, 16, 12–26. [Google Scholar] [PubMed]
- ISO. ISO 3632-1:2011. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/45/44523.html (accessed on 27 December 2021).
- Anastasaki, E.; Kanakis, C.; Pappas, C.; Maggi, L.; del Campo, C.P.; Carmona, M.; Alonso, G.L.; Polissiou, M.G. Differentiation of Saffron from Four Countries by Mid-Infrared Spectroscopy and Multivariate Analysis. Eur. Food Res. Technol. 2010, 230, 571–577. [Google Scholar] [CrossRef]
- Culleré, L.; San-Juan, F.; Cacho, J. Characterisation of Aroma Active Compounds of Spanish Saffron by Gas Chromatography-Olfactometry: Quantitative Evaluation of the Most Relevant Aromatic Compounds. Food Chem. 2011, 127, 1866–1871. [Google Scholar] [CrossRef]
- Lech, K.; Witowska-Jarosz, J.; Jarosz, M. Saffron Yellow: Characterization of Carotenoids by High Performance Liquid Chromatography with Electrospray Mass Spectrometric Detection. J. Mass Spectrom. 2009, 44, 1661–1667. [Google Scholar] [CrossRef]
- Maggi, L.; Sánchez, A.M.; Carmona, M.; Kanakis, C.D.; Anastasaki, E.; Tarantilis, P.A.; Polissiou, M.G.; Alonso, G.L. Rapid Determination of Safranal in the Quality Control of Saffron Spice (Crocus sativus L.). Food Chem. 2011, 127, 369–373. [Google Scholar] [CrossRef]
- Lozano, P.; Castellar, M.R.; Simancas, M.J.; Iborra, J.L. A Quantitative High-Performance Liquid Chromatographic Method to Analyse Commercial Saffron (Crocus sativus L.) Products. J. Chromatogr. A 1999, 830, 477–483. [Google Scholar] [CrossRef]
- Zougagh, M.; Ríos, A.; Valcárcel, M. An Automated Screening Method for the Fast, Simple Discrimination between Natural and Artificial Colorants in Commercial Saffron Products. Anal. Chim. Acta 2005, 535, 133–138. [Google Scholar] [CrossRef]
- Di Donato, F.; D’Archivio, A.A.; Maggi, M.A.; Rossi, L. Detection of Plant-Derived Adulterants in Saffron (Crocus sativus L.) by HS-SPME/GC-MS Profiling of Volatiles and Chemometrics. Food Anal. Methods 2021, 14, 784–796. [Google Scholar] [CrossRef]
- Hadizadeh, F.; Mahdavi, M.; Emami, S.A.; Khashyarmanesha, Z.; Hassanzadeh, M.; Asili, J.; Seifi, M.; Nassirli, H.; Shariatimoghadam, A.; Noorbakhsh, R. Evaluation of ISO Method in Saffron Qualification. Acta Hortic. 2007, 739, 410. [Google Scholar] [CrossRef]
- Tarantilis, P.A.; Polissiou, M.; Manfait, M. Separation of Picrocrocin, Cis-Trans-Crocins and Safranal of Saffron Using High-Performance Liquid Chromatography with Photodiode-Array Detection. J. Chromatogr. A 1994, 664, 55–61. [Google Scholar] [CrossRef]
- Merkle, S.; Kleeberg, K.K.; Fritsche, J. Recent Developments and Applications of Solid Phase Microextraction (SPME) in Food and Environmental Analysis—A Review. Chromatography 2015, 2, 293–381. [Google Scholar] [CrossRef] [Green Version]
- D’Auria, M.; Mauriello, G.; Rana, G.L. Volatile Organic Compounds from Saffron. Flavour Fragr. J. 2004, 19, 17–23. [Google Scholar] [CrossRef]
- Du, H.; Wang, J.; Hu, Z.; Yao, X. Quantitative Structure-Retention Relationship Study of the Constituents of Saffron Aroma in SPME-GC–MS Based on the Projection Pursuit Regression Method. Talanta 2008, 77, 360–365. [Google Scholar] [CrossRef]
- Bononi, M.; Milella, P.; Tateo, F. Gas Chromatography of Safranal as Preferable Method for the Commercial Grading of Saffron (Crocus sativus L.). Food Chem. 2015, 176, 17–21. [Google Scholar] [CrossRef]
- Condurso, C.; Cincotta, F.; Tripodi, G.; Verzera, A. Bioactive Volatiles in Sicilian (South Italy) Saffron: Safranal and Its Related Compounds. J. Essent. Oil Res. 2017, 29, 221–227. [Google Scholar] [CrossRef]
- Urbani, E.; Blasi, F.; Chiesi, C.; Maurizi, A.; Cossignani, L. Characterization of Volatile Fraction of Saffron from Central Italy (Cascia, Umbria). Null 2015, 18, 2223–2230. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Koutsoumpou, M.; Liakou, V.; Kontakos, S.; Kontominas, M.G. Characterization and Geographical Discrimination of Saffron from Greece, Spain, Iran, and Morocco Based on Volatile and Bioactivity Markers, Using Chemometrics. Eur. Food Res. Technol. 2017, 243, 1577–1591. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Di Pietro, L.; Maggi, M.A.; Rossi, L. Optimization Using Chemometrics of HS-SPME/GC–MS Profiling of Saffron Aroma and Identification of Geographical Volatile Markers. Eur. Food Res. Technol. 2018, 244, 1605–1613. [Google Scholar] [CrossRef]
- Variance-Optimal Designs. In Response Surfaces, Mixtures, and Ridge Analyses; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 461–481. ISBN 978-0-470-07276-9.
- Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B (Methodol.) 1951, 13, 1–38. [Google Scholar] [CrossRef]
- Adams, P.R. Identification of Essential Oil Components By Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Pub Corp.: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-21-4. [Google Scholar]
- Kanakis, C.D.; Daferera, D.J.; Tarantilis, P.A.; Polissiou, M.G. Qualitative Determination of Volatile Compounds and Quantitative Evaluation of Safranal and 4-Hydroxy-2,6,6-Trimethyl-1-Cyclohexene-1-Carboxaldehyde (HTCC) in Greek Saffron. J. Agric. Food Chem. 2004, 52, 4515–4521. [Google Scholar] [CrossRef]
- Cid-Pérez, T.S.; Nevárez-Moorillón, G.V.; Ochoa-Velasco, C.E.; Navarro-Cruz, A.R.; Hernández-Carranza, P.; Avila-Sosa, R. The Relation between Drying Conditions and the Development of Volatile Compounds in Saffron (Crocus sativus). Molecules 2021, 26, 6954. [Google Scholar] [CrossRef]
- Anastasaki, E.; Kanakis, C.; Pappas, C.; Maggi, L.; del Campo, C.P.; Carmona, M.; Alonso, G.L.; Polissiou, M.G. Geographical Differentiation of Saffron by GC–MS/FID and Chemometrics. Eur. Food Res. Technol. 2009, 229, 899–905. [Google Scholar] [CrossRef]
- Tahri, K.; Bougrini, M.; Saidi, T.; Tiebe, C.; El Alami-El Hassani, N.; El Bari, N.; Hübert, T.; Bouchikhi, B. Determination of Safranal Concentration in Saffron Samples by Means of VE-Tongue, SPME-GC-MS, UV-Vis Spectrophotometry and Multivariate Analysis. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- D’Auria, M.; Mauriello, G.; Racioppi, R.; Rana, G.L. Use of SPME-GC-MS in the Study of Time Evolution of the Constituents of Saffron Aroma: Modifications of the Composition During Storage. J. Chromatogr. Sci. 2006, 44, 18–21. [Google Scholar] [CrossRef]
Run | A: Sample Weight (mg) | B: Water Volume (mL) | C: Temperature (°C) | D: Exposure Time (min) | Safranal (% Area) |
---|---|---|---|---|---|
1 | 15 | 4 | 45 | 40 | 95.3 |
2 | 35 | 4 | 45 | 20 | 95.5 |
3 | 35 | 2 | 45 | 40 | 93.4 |
4 | 15 | 4 | 55 | 40 | 94.6 |
5 | 15 | 2 | 55 | 20 | 94.6 |
6 | 25 | 3 | 50 | 30 | 94.9 |
7 | 35 | 4 | 55 | 20 | 94.7 |
8 | 25 | 3 | 40 | 30 | 95.4 |
9 | 15 | 4 | 45 | 20 | 96.2 |
10 | 35 | 4 | 45 | 40 | 94.8 |
11 | 15 | 2 | 45 | 40 | 95.4 |
12 | 25 | 5 | 50 | 30 | 94.9 |
13 | 25 | 3 | 50 | 30 | 95.1 |
14 | 25 | 3 | 60 | 30 | 92.0 |
15 | 25 | 3 | 50 | 50 | 93.6 |
16 | 15 | 2 | 45 | 20 | 94.9 |
17 | 35 | 2 | 45 | 20 | 94.7 |
18 | 25 | 3 | 50 | 30 | 94.7 |
19 | 45 | 3 | 50 | 30 | 93.9 |
20 | 5 | 3 | 50 | 30 | 94.4 |
21 | 15 | 4 | 55 | 20 | 94.9 |
22 | 35 | 2 | 55 | 20 | 94.4 |
23 | 25 | 3 | 50 | 10 | 95.4 |
24 | 35 | 2 | 55 | 40 | 93.2 |
25 | 15 | 2 | 55 | 40 | 92.9 |
26 | 35 | 4 | 55 | 40 | 93.1 |
27 | 25 | 1 | 50 | 30 | 93.1 |
28 | 25 | 3 | 50 | 30 | 94.3 |
29 | 25 | 3 | 50 | 30 | 93.9 |
30 | 25 | 3 | 50 | 30 | 94.6 |
Source | Sum of Squares | DF 1 | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 19.04 | 4 | 4.76 | 18.05 | <0.0001 2 |
A-Sample weight | 1.57 | 1 | 1.57 | 5.96 | 0.0221 |
B-Water volume | 3.37 | 1 | 3.37 | 12.80 | 0.0015 |
C-Extraction temperature | 9.17 | 1 | 9.17 | 34.78 | <0.0001 |
D-Exposure time | 4.92 | 1 | 4.92 | 18.67 | 0.0002 |
Residual | 6.59 | 25 | 0.26 | ||
Lack of fit | 5.76 | 20 | 0.29 | 1.75 | 0.2801 3 |
Pure error | 0.83 | 5 | 0.17 | ||
Cor. total | 25.63 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revelou, P.-K.; Mouzoula, S.; Xagoraris, M.; Evangelaras, H.; Papadopoulos, G.K.; Pappas, C.S.; Tarantilis, P.A. Optimized Isolation of Safranal from Saffron by Solid-Phase Microextraction (SPME) and Rotatable Central Composite Design-Response Surface Methodology (RCCD-RSM). Separations 2022, 9, 48. https://doi.org/10.3390/separations9020048
Revelou P-K, Mouzoula S, Xagoraris M, Evangelaras H, Papadopoulos GK, Pappas CS, Tarantilis PA. Optimized Isolation of Safranal from Saffron by Solid-Phase Microextraction (SPME) and Rotatable Central Composite Design-Response Surface Methodology (RCCD-RSM). Separations. 2022; 9(2):48. https://doi.org/10.3390/separations9020048
Chicago/Turabian StyleRevelou, Panagiota-Kyriaki, Spyridoula Mouzoula, Marinos Xagoraris, Haralambos Evangelaras, George K. Papadopoulos, Christos S. Pappas, and Petros A. Tarantilis. 2022. "Optimized Isolation of Safranal from Saffron by Solid-Phase Microextraction (SPME) and Rotatable Central Composite Design-Response Surface Methodology (RCCD-RSM)" Separations 9, no. 2: 48. https://doi.org/10.3390/separations9020048
APA StyleRevelou, P. -K., Mouzoula, S., Xagoraris, M., Evangelaras, H., Papadopoulos, G. K., Pappas, C. S., & Tarantilis, P. A. (2022). Optimized Isolation of Safranal from Saffron by Solid-Phase Microextraction (SPME) and Rotatable Central Composite Design-Response Surface Methodology (RCCD-RSM). Separations, 9(2), 48. https://doi.org/10.3390/separations9020048