Screening for New Efficient and Sustainable-by-Design Solvents to Assist the Extractive Fermentation of Glucose to Bioethanol Fuels
Abstract
:1. Introduction
2. CAMD Optimization Algorithm
3. Formulation of the Solvent Design Problem
3.1. EF Process Simulator
3.1.1. Simulation Model Assumptions/Requirements
- The broth density, ρ1, is a linear function of the ethanol and glucose concentration in the aqueous phase. Note that linear mixing rules are the default assumption.
- The bioreaction system produces only cells, ethanol, and carbon dioxide, with yield coefficients YX/S, YP/S, and YC/S, respectively. There are no cells present in the extract phase.
- The specific growth rate, μ, follows the modified Monod equation:
3.1.2. Simulation Model Formulation
3.1.3. Calculation of EF Process Objectives
3.2. Constraints for EF Solvents
3.2.1. Distribution Coefficient of the Product to Be Removed (High)
3.2.2. Solvent Losses to the Aqueous Phase (Low)
3.2.3. Solvent Selectivity (High)
3.2.4. Distribution Coefficient for Essential Nutrients/Byproducts (Low)
3.2.5. Ease of Solvent—Solute Separation (High)
3.2.6. Solvent Biocompatibility (High)
3.2.7. Solvent Environmental Impact (Low)
3.2.8. Other Physical Properties of the Solvent
3.2.9. Solvent Cost (Low)
4. EF Solvent Design Case Study
4.1. Design Case Parameters
4.2. Solvent Design Results
5. Discussion of Results
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
A, B, C | coefficients in Equation (2) |
CS | substrate conversion [] |
D, D′ | dilution rates based on influent and effluent infinite aqueous phase flowrate [h−1], respectively |
DE, DE′ | dilution rates based on influent and effluent infinite extract phase flowrate [h−1], respectively |
EE | extraction efficiency [g/L product in extract/g/L product in raffinate] |
F1 | objective 1: maximum ethanol productivity in the extract phase (Equation (12)) |
F2 | objective 2: maximum extraction efficiency (Equation (14)). |
KP | product inhibition constant [g/L] |
KS | substrate saturation constant [g/L] |
LC50 | concentration causing 50% mortality [mole/L] |
MP | distribution coefficient of solute (produced ethanol) [g in raffinate/g in solvent] |
P1, P2 | effluent product concentration in raffinate and extract phases [g/L], respectively |
PDE | productivity in the extract phase [g/L/h] |
PDT | total product (ethanol) productivity [g/L/h] |
PDW | productivity in the nutrient phase [g/L/h] |
, S1 | influent and effluent substrate concentration in raffinate phase [g/L], respectively |
SE | solvent selectivity towards solute [g solute/g raffinate] |
SL | solvent loss to raffinate [g solvent/g raffinate] |
ti | toxicity of compound i, defined as ti = −log(LC50i) [] (LC50 is in [mol/L]) |
Tb,i | boiling point temperature of compound i [K] |
Tf,i | freezing point temperature of compound i [K] |
TF | process temperature [K] |
YC/S | carbon dioxide yield coefficient [g CO2 produced/g substrate consumed] |
YP/S | ethanol yield coefficient [g ethanol produced/g substrate consumed] |
YX/S | cells yield coefficient [g cells produced/g substrate consumed] |
WS, WY | auxiliary variables for Equations (3)–(5) |
Greek letters | |
α, β | coefficients in Equations (3)–(5) |
η | ratio of actual MP over its value at infinite dilution conditions |
μ | specific growth rate [h−1] |
ρi | density of pure component i [g/L] |
Superscripts and subscripts | |
∞ | infinite dilution conditions |
i | compound i |
E | extract, solvent phase |
P | solute, product (ethanol) |
W | raffinate, aqueous phase |
min, max | minimum and maximum values, respectively |
References
- [EUGD] European Green Deal: Commission Proposes Transformation of EU Economy and Society to Meet Climate Ambitions, Press Release 14 July 2021, Brussels. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541 (accessed on 14 February 2022).
- Regulation (EU) 2018/1999 of the European Parliament and of the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action, Amending Regulations (EC) No 663/2009 and (EC) No 715/2009 of the European Parliament and of the Council, Directives 94/22/EC, 98/70/EC, 2009/31/EC, 2009/73/EC, 2010/31/EU, 2012/27/EU and 2013/30/EU of the European Parliament and of the Council, Council Directives 2009/119/EC and (EU) 2015/652 and repealing Regulation (EU) No 525/2013 of the European Parliament and of the Council (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg/2018/1999/2021-07-29 (accessed on 14 February 2022).
- Fulton, L.M.; Lynd, L.R.; Körner, A.; Greene, N.; Tonachel, L.R. The need for biofuels as part of a low carbon energy future. Biofuels Bioprod. Biorefining 2015, 9, 476–483. [Google Scholar] [CrossRef]
- Correa, D.F.; Beyer, H.L.; Fargione, J.E.; Hill, J.D.; Possingham, H.P.; Thomas-Hall, S.R.; Schenk, P.M. Towards the implementation of sustainable biofuel production systems. Renew. Sustain. Energy Rev. 2019, 107, 250–263. [Google Scholar] [CrossRef]
- Vohra, M.; Manwar, J.; Manmode, R.; Padgilwar, S.; Patil, S. Bioethanol production: Feedstock and current technologies. J. Environ. Chem. Eng. 2014, 2, 573–584. [Google Scholar] [CrossRef]
- Ayas, N. Energy Materials. In Comprehensive Energy Systems; Dincer, I., Ed.; (Section 2.13.3.2.2 Advantages of ethanol fuel); Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Zabed, H.; Sahu, J.N.; Suely, A.; Boyce, A.N.; Faruq, G. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sustain. Energy Rev. 2017, 71, 475–501. [Google Scholar] [CrossRef]
- Soleymani Angili, T.; Grzesik, K.; Rödl, A.; Kaltschmitt, M. Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology. Energies 2021, 14, 2939. [Google Scholar] [CrossRef]
- Lemos, D.A.; Sonego, J.L.; Boschiero, M.V.; Araujo, E.C.; Cruz, A.J.; Badino, A.C. Selection and application of nontoxic solvents in extractive ethanol fermentation. Biochem. Eng. J. 2017, 127, 128–135. [Google Scholar] [CrossRef]
- Farias, D.; Maugeri-Filho, F. Sequential fed batch extractive fermentation for enhanced bioethanol production using recycled Spathaspora passalidarum and mixed sugar composition. Fuel 2021, 288, 119673. [Google Scholar] [CrossRef]
- Lemos, D.A.; Sonego, J.L.; Cruz, A.J.; Badino, A.C. Improvement of ethanol production by extractive fed-batch fermentation in a drop column bioreactor. Bioprocess. Biosyst. Eng. 2020, 43, 2295–2303. [Google Scholar] [CrossRef]
- Borhani, T.N.; Wang, M. Role of solvents in CO2 capture processes: The review of selection and design methods. Renew. Sustain. Energy Rev. 2019, 114, 109299. [Google Scholar] [CrossRef]
- Papadopoulos, A.I.; Tsivintzelis, I.; Seferlis, P.; Linke, P. Computer-Aided Molecular Design: Fundamentals, Methods, and Applications. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Reedijk, J., Ed.; Elsevier: Waltham, MA, USA, 2018. [Google Scholar]
- Chemmangattuvalappil, N.G. Development of solvent design methodologies using computer-aided molecular design tools. Curr. Opin. Chem. Eng. 2020, 27, 51–59. [Google Scholar] [CrossRef]
- Gani, R. Group contribution-based property estimation methods: Advances and perspectives. Curr. Opin. Chem. Eng. 2019, 23, 184–196. [Google Scholar] [CrossRef]
- Zhou, T.; McBride, K.; Linke, S.; Song, Z.; Sundmacher, K. Computer-aided solvent selection and design for efficient chemical processes. Curr. Opin. Chem. Eng. 2020, 27, 35–44. [Google Scholar] [CrossRef]
- Chai, S.; Song, Z.; Zhou, T.; Zhang, L.; Qi, Z. Computer-aided molecular design of solvents for chemical separation processes. Curr. Opin. Chem. Eng. 2022, 35, 100732. [Google Scholar] [CrossRef]
- Khor, S.Y.; Liam, K.Y.; Loh, W.X.; Tan, C.Y.; Ng, L.Y.; Hassim, M.H.; Ng, D.K.; Chemmangattuvalappil, N.G. Computer aided molecular design for alternative sustainable solvent to extract oil from palm pressed fibre. Process. Saf. Environ. Prot. 2017, 106, 211–223. [Google Scholar] [CrossRef]
- Papadopoulos, A.I.; Shavalieva, G.; Papadokonstantakis, S.; Seferlis, P.; Perdomo, F.A.; Galindo, A.; Jackson, G.; Adjiman, C.S. An approach for simultaneous computer-aided molecular design with holistic sustainability assessment: Application to phase-change CO2 capture solvents. Comput. Chem. Eng. 2020, 135, 106769. [Google Scholar] [CrossRef]
- Ten, J.Y.; Liew, Z.H.; Oh, X.Y.; Hassim, M.H.; Chemmangattuvalappil, N. Computer-Aided Molecular Design of Optimal Sustainable Solvent for Liquid-Liquid Extraction. Process. Integr. Optim. Sustain. 2021, 5, 269–284. [Google Scholar] [CrossRef]
- Baxevanidis, P.; Papadokonstantakis, S.; Kokossis, A.; Marcoulaki, E. Group Contribution-based LCA models to enable screening for environmentally benign novel chemicals in CAMD applications. AIChE J. 2021, e17544. [Google Scholar] [CrossRef]
- Zhou, T.; Song, Z.; Zhang, X.; Gani, R.; Sundmacher, K. Optimal solvent design for extractive distillation processes: A multiobjective optimization-based hierarchical framework. Ind. Eng. Chem. Res. 2019, 58, 5777–5786. [Google Scholar] [CrossRef]
- Marcoulaki, E.C.; Kokossis, A.C. On the development of novel chemicals using a systematic synthesis approach. I–Optimisation framework. Chem. Eng. Sci. 2000, 55, 2529. [Google Scholar] [CrossRef]
- Marcoulaki, E.C.; Kokossis, A.C. On the development of novel chemicals using a systematic optimisation approach. II–Solvent design. Chem. Eng. Sci. 2000, 55, 2547. [Google Scholar] [CrossRef]
- Papadopoulos, A.I.; Linke, P. Integrated solvent and process selection for separation and reactive separation systems. Chem. Eng. Process. Process. Intensif. 2009, 48, 1047–1060. [Google Scholar] [CrossRef]
- Papadopoulos, A.I.; Stijepovic, M.; Linke, P.; Seferlis, P.; Voutetakis, S. Toward optimum working fluid mixtures for organic Rankine cycles using molecular design and sensitivity analysis. Ind. Eng. Chem. Res. 2013, 52, 12116–12133. [Google Scholar] [CrossRef]
- Papadopoulos, A.I.; Zarogiannis, T.; Seferlis, P. Computer-Aided Molecular Design of CO2 Capture Solvents and Mixtures. In Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration; Papadopoulos, A.I., Seferlis, P., Eds.; John Wiley & Sons Ltd.: West Sussex, UK, 2017; p. 10173. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Marcoulaki, E.C.; Kokossis, A.C. Scoping and screening complex reaction networks using stochastic optimization. AIChE J. 1999, 45, 1977–1991. [Google Scholar] [CrossRef]
- Gutieérrez, L.F.; Sánchez, O.J.; Cardona, C.A. Analysis and design of extractive fermentation processes using a novel short-cut method. Ind. Eng. Chem. Res. 2013, 52, 12915–12926. [Google Scholar] [CrossRef]
- Kollerup, F.; Daugulis, A.J. A mathematical model for ethanol production by extractive fermentation in a continuous stirred tank fermentor. Biotechnol. Bioeng. 1985, 27, 1335–1346. [Google Scholar] [CrossRef]
- Cockrem, M.; Flatt, J.; Lightfoot, E. Solvent selection for extraction from dilute solution. Sep. Sci. Technol. 1989, 24, 769. [Google Scholar] [CrossRef]
- Pretel, E.J.; Lopez, P.A.; Bottini, S.B.; Brignole, E.A. Computer-aided molecular design of solvents for separation processes. AIChE J. 1994, 40, 1349. [Google Scholar] [CrossRef]
- Fredenslund, A. Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Reid, R.C.; Prausnitz, J.M.; Poling, B.E. The Properties of Gases and Liquids, 4th ed.; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Constantinou, L.; Gani, R. New group contribution method for estimating properties of pure compounds. AIChE J. 1994, 40, 1697. [Google Scholar] [CrossRef]
- Wang, W.; Achenie, L.E.K. Computer aided solvent design for extractive fermentation. Fluid Phase Equilibria 2002, 201, 1–18. [Google Scholar] [CrossRef]
- Trevizo, C.; Nirmalakhandan, N. Prediction of microbial toxicity of industrial organic chemicals. Water Sci. Technol. 1999, 39, 63. [Google Scholar] [CrossRef]
- Gao, C.; Govind, R.; Tabak, H.H. Application of the group contribution method for predicting the toxicity of organic chemicals. Environ. Technol. Chem. 1992, 11, 631. [Google Scholar] [CrossRef]
- [EC] Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Chemicals Strategy for Sustainability towards a Toxic-Free Environment. COM(2020) 667 Final, Brussels. 14 October 2020. Available online: https://ec.europa.eu/environment/pdf/chemicals/2020/10/Strategy.pdf (accessed on 14 February 2022).
- Park, W.J.; Kim, R.; Roh, S.; Ban, H. Analysis of major environmental impact categories of road construction materials. Sustainability 2020, 12, 6951. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
α | 0.411 |
β | −0.163 |
ρw | 1000 g/L |
YX/S | 0.10 |
YP/S | 0.46 |
YC/S | 0.44 |
μmax | 0.45 h−1 |
Kp | 23.0 g/L |
Ks | 1.0 g/L |
Tb,P | 351.4 K |
TF | 298 K |
S1 | 30 g/L |
η | 80% |
Property | Feasible Range | Bound | Value | Units |
---|---|---|---|---|
≥SE,min | SE,min | 2.0 | - | |
≥MP,min | MP,min | 1.0 | - | |
≤Slmax | Slmax | 0.005 | - | |
≤MS,max | MS,max | 0.1 | - | |
Tb,E | ∈[Tb,P + Tmin, 600] or [300, Tb,P − Tmin] | ΔΤmin | 30. | K |
Tf,E | ≤TF − ΔΤmin′ | ΔΤmin′ | 10. | K |
ρE | ≥ρ1⋅Δρ,max | Δρ,max | 125% | - |
≤ρ1⋅Δρ,min | Δρ,min | 80% | - | |
tE | ≤tE,max | tE,max | 1.5, 2.0, 2.5, 3.0, 3.5, 10. | mol/L |
GWP | ≤GWPE,max | GWPE,max | 8.0, 10.0 | g CO2-eq/g |
CED | ≤CEDE,max | CEDE,max | 150, 200 | kJ-eq/g |
EI99 | ≤EI99E,max | EI99E,max | 0.4, 0.5 | - |
Parameter | Parameter Value per Design Case A1 to A12 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[g/L] | A1, A2, A3, A4 | A5, A6, A7, A8 | A9, A10, A11, A12 | |||||||||
150 | 300 | 600 | ||||||||||
DE [h−1] | A1, A5, A9 | A2, A6, A10 | A3, A7, A11 | A4, A8, A12 | ||||||||
0.5 | 1.0 | 2.0 | 4.0 |
No | SMILES * | tE | ME | Sl × 103 | Tb,E | rE | Tf,E | GWP | CED | EI99 |
---|---|---|---|---|---|---|---|---|---|---|
D1 | ClCCC(=O)OCC#N | 1.69 | 0.671 | 10.9 | 498 | 956 | 246 | 3.23 | 86.2 | 0.389 |
D2 | CCC(=O)OCCCCC#N | 2.08 | 1.31 | 4.87 | 510 | 756 | 245 | 3.76 | 99.4 | 0.433 † |
D3 | C=CCCCCC#N | 2.43 | 1.63 | 2.15 | 462 | 654 | 221 | 4.98 | 141 | 0.436 † |
D4 | C=C(CCl)CC#N | 2.44 | 1.31 | 5.84 | 465 | 846 | 229 | 3.36 | 115 | 0.444 † |
D5 | CCCCCC#N | 2.48 | 2.46 | 6.55 | 442 | 646 | 205 | 3.68 | 110 | 0.433 † |
D6 | C=CC(Cl)CC#N | 2.75 | 1.27 | 5.16 | 461 | 816 | 223 | 5.77 | 151 † | 0.442 † |
D7 | C(C)(C)CCC#N | 2.91 | 2.45 | 6.53 | 434 | 654 | 190 | 4.14 | 132 | 0.503 ‡ |
D8 | C(C)(C)(C)C(=O)OCCC#N | 2.92 | 1.24 | 2.28 | 513 | 767 | 252 | 5.16 | 153 † | 0.562 ‡ |
D9 | C(C)(C)(C)CC#N | 3.03 | 2.52 | 7.16 | 425 | 677 | 203 | 4.94 | 162 † | 0.558 ‡ |
D10 | C(C)(C)C(C=O)CCl | 4.51 | 1.59 | 8.55 | 445 | 861 | 228 | 6.71 | 171 † | 0.483 † |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcoulaki, E.; Baxevanidis, P. Screening for New Efficient and Sustainable-by-Design Solvents to Assist the Extractive Fermentation of Glucose to Bioethanol Fuels. Separations 2022, 9, 60. https://doi.org/10.3390/separations9030060
Marcoulaki E, Baxevanidis P. Screening for New Efficient and Sustainable-by-Design Solvents to Assist the Extractive Fermentation of Glucose to Bioethanol Fuels. Separations. 2022; 9(3):60. https://doi.org/10.3390/separations9030060
Chicago/Turabian StyleMarcoulaki, Effie, and Pantelis Baxevanidis. 2022. "Screening for New Efficient and Sustainable-by-Design Solvents to Assist the Extractive Fermentation of Glucose to Bioethanol Fuels" Separations 9, no. 3: 60. https://doi.org/10.3390/separations9030060
APA StyleMarcoulaki, E., & Baxevanidis, P. (2022). Screening for New Efficient and Sustainable-by-Design Solvents to Assist the Extractive Fermentation of Glucose to Bioethanol Fuels. Separations, 9(3), 60. https://doi.org/10.3390/separations9030060