An Integrated Chromatographic Strategy for the Large-Scale Extraction of Ergosterol from Tulasnellaceae sp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus and Reagents
2.2. Sample Preparation
2.3. Chromatographic Conditions
3. Results and Discussion
3.1. Extraction and Analysis of Endogenous Metabolites from Gymnadenia orchidis
3.2. Crude Sample Pretreatment via Medium-Pressure Chromatography
3.3. Further Purification of Fraction 2 on ReproSil-Pur C18 AQ Chromatographic Column
3.4. Structural Characterization of Ergosterol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Purba, R.; Paenekoum, S.; Paeng, P. Development of a Simple High-Performance Liquid Chromatography-Based Method to Quantify Synergistic Compounds and Their Composition in Dried Leaf Extracts of Piper Sarmentosum Roxb. Separations 2021, 8, 152. [Google Scholar] [CrossRef]
- Yang, B.B.; Li, S.; Zhang, R.P.; Wang, Y.; Shi, J.G. Quantitative analysis of four active constituents in Tibetan herb Gymnadenia conopsea by high-performance liquid chromatography. Chin. J. Chin. Mater. Med. 2009, 34, 1819–1822. [Google Scholar]
- Wu, J.B.; Liu, C.P.; Lu, Y.B. Preparative separation of phytosterol analogues from green alga Chlorella vulgaris using recycling counter-current chromatography. J. Sep. Sci. 2017, 40, 2326–2334. [Google Scholar] [CrossRef]
- Sha, Y.F.; Deng, C.H.; Zhang, H.B.; Xie, W.Y.; Liu, B.Z. Microwave-assisted silylation followed by gas chromatography/mass spectrometry for rapid determination of ergosterol in cigarettes. J. Sep. Sci. 2008, 31, 2451–2456. [Google Scholar] [CrossRef]
- Chen, Y.H.; Xing, X.K.; Guo, S.X. The endophytic fungal community composition of Gymnadenia conopsea in Beijing. Mycosystema 2018, 37, 35–42. [Google Scholar]
- Zhao, Y.; Xie, J.; Hou, S.; Ni, A.; Zhou, L. Isolation and characterization of ergosterol from monascus anka for anti-lipid peroxidation properties. J. Mycol. Med. 2020, 30, 101038. [Google Scholar]
- Liu, Y.P.; Pu, C.J.; Wang, M.; He, J.; Li, Z.H.; Feng, T.; Xie, J.; Liu, J.K. Cytotoxic ergosterols from cultures of the basidiomycete Psathyrella candolleana. Fitoterapia 2019, 138, 104289. [Google Scholar] [CrossRef]
- Yao, J.X.; Shi, Y.M.; Liu, Y.; He, S.; Ding, L.J.; Yang, F. Highly Oxidized Ergosterol Derivatives from the Fungus Nigrospora oryzae. Chem. Nat. Compd. 2019, 55, 390–392. [Google Scholar] [CrossRef]
- Collins, M.D.; Shah, H.N.; Minnikin, D.E. A note on the separation of natural mixtures of bacterial menaquinones using phase thin-layer chromatography. J. Appl. Bacteriol. 2010, 48, 277–282. [Google Scholar] [CrossRef]
- Xu, L.J.; Liu, S.B. Forecasting structure of natural products through color formation process by thin layer chromatography. Food. Chem. 2021, 334, 127496. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.J.; Qiao, Z.N.; Huang, G.S.; Long, M.F.; Yang, T.W.; Zhang, X.; Shao, M.L.; Xu, Z.H.; Rao, Z.M. Optimization of L-arginine Purification from Corynebacterium crenatum Fermentation Broth. J. Sep. Sci. 2020, 43, 2936–2948. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lei, C.W.; Song, H.; Yang, Z.Q.; Yuan, X.H.; He, X.S. Isolation and purification of ergosterol peroxide from Xylaria Striata by high-speed counter-current chromatography. J. Food. Sci. Technol. 2016, 37, 262–266. [Google Scholar]
- Huang, L.Y.; Cao, Y.Y.; Xu, H.; Chen, G.N. Separation and purification of ergosterol and stigmasterol in Anoectochilus roxburghii (wall) Lindl by high-speed counter-current chromatography. J. Sep. Sci. 2011, 34, 385–392. [Google Scholar] [CrossRef]
- Zhang, N.S.; Wang, J.B.; Wang, X.Y.; Wang, X.D.; Hu, F.L. Preparative isolation and purification of ergosterol from a strain of Paecilomyces hepialid by high-speed counter-current chromatography. Se. Pu 2010, 28, 68–72. [Google Scholar] [CrossRef]
- Luca, C.D.; Lievore, G.; Bozza, D.; Buratti, A.; Catani, M. Downstream processing of therapeutic peptides by means of preparative liquid chromatography. Molecules 2021, 26, 4688. [Google Scholar] [CrossRef]
- Perez, C.; Rani, M.; Phan, T. Optimization of high-performance liquid chromatography parameters for purification of oligonucleotide-a. J. Anal. Chem. 2022, 13, 39–50. [Google Scholar] [CrossRef]
- Dang, J.; Du, Y.R.; Wang, Q.; Dawa, Y.Z.; Chen, C.B.; Wang, Q.L.; Ma, J.B.; Tao, Y.D. Preparative isolation of arylbutanoid-type phenol [(-)-rhododendrin] with peak tailing on conventional C18 column using middle chromatogram isolated gel column coupled with reversed-phase liquid chromatography. J. Sep. Sci. 2020, 23, 3233–3241. [Google Scholar] [CrossRef]
- Bitterling, H.; Schaefer, U.; Krammer, G.E.; Meier, L.; Steingass, C.B. Investigations into the natural occurrence of 1-phenylethyl acetate (styrallyl acetate). J. Agric. Food Chem. 2020, 68, 8613–8620. [Google Scholar] [CrossRef]
- Angelis, A.; Michailidis, D.; Antoniadi, L.; Stathopoulos, P.; Skaltsounis, L. Pilot continuous centrifugal liquid-liquid extraction of extra virgin olive oil biophenols and gram-scale recovery of pure oleocanthal, oleacein, mfoa, mfla and hydroxytyrosol. A. Sep. Purif. Technol. 2021, 255, 117692. [Google Scholar] [CrossRef]
- Pan, G.Q.; Shen, J.W.; Ma, Y.H.; He, Y.F.; Bao, Y.; Li, R.R.; Wang, S.S.; Wang, Q.; Lin, P.C.; Dang, J. Preparative separation of isoquinoline alkaloids from Corydalis impatiens using a middle-pressure chromatogram isolated gel column coupled with two-dimensional liquid chromatography. J. Sep. Sci. 2019, 42, 3182–3190. [Google Scholar] [CrossRef]
- Dawa, Y.; Du, Y.; Wang, Q.; Chen, C.; Zou, D.; Qi, D.; Ma, J.; Dang, J. Targeted isolation of 1,1-diphenyl-2-picrylhydrazyl inhibitors from saxifraga atrata using medium- and high- pressure liquid chromatography combined with online high performance liquid chromatography–1,1-diphenyl-2- picrylhydrazyl detection. J. Chromatogr. A 2021, 1635, 461690. [Google Scholar] [CrossRef] [PubMed]
- Park, S.I.; Park, S.C.; Kim, S.R.; Jang, Y.P. Two-step purification method for aging pigments a2e and iso-a2e using medium pressure liquid chromatography. B Korean Chem. Soc. 2016, 37, 1541–1544. [Google Scholar] [CrossRef]
- Zheng, X.; Qin, Y.; Meng, X.; Jin, Z.; Wang, J. Synthesis of polyethylene glycol functional bonded silica gel for selective recognition and separation of α-cyclodextrin. J. Chromatogr. A 2021, 1639, 461917. [Google Scholar] [CrossRef]
- Gunawan, S.; Pamungkas, B.; Primaswari, C.S.; Hapsari, S.; Aparamarta, H.W. Calophyllolide separation from calophyllum inophyllum oil by silica gel adsorption. Mater. Sci. Forum. 2020, 988, 101–107. [Google Scholar]
- Ying, Z.; Ouyang, X.; Chen, J.; Zhao, L.; Qiu, X. Separation of aromatic monomers from oxidatively depolymerized products of lignin by combining sephadex and silica gel column chromatography. Sep. Purif. Technol. 2018, 191, 250–261. [Google Scholar]
- Xiu, W.; Yupei, Z.; Nan, W.; Jingya, C.; Yanduo, T.; Ruitao, Y. A Method to Separate Two Main Antioxidants from Lepidium latifolium L. Extracts Using Online Medium Pressure Chromatography Tower and Two-Dimensional Inversion/Hydrophobic Interaction Chromatography Based on Online HPLC-DPPH Assay. Separations 2021, 12, 238. [Google Scholar]
- Zhou, W.; Liu, Y.; Wang, J.; Guo, Z.; Shen, A.; Liu, Y.; Liang, X. Application of two-dimensional liquid chromatography in the separation of traditional Chinese medicine. J. Sep. Sci. 2020, 43, 87–104. [Google Scholar] [CrossRef]
- Fan, Y.; Fu, Y.; Fu, Q.; Cai, J.; Xin, H.; Dai, M.; Jin, Y. Purification of flavonoids from licorice using an off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method. J. Sep. Sci. 2016, 39, 2710–2719. [Google Scholar] [CrossRef]
- Nowak, R.; Drozd, M.; Mendyk, E.; Lemieszek, M.; Krakowiak, O.; Kisiel, W.; Rzeski, W.; Szewczyk, K. A new method for the isolation of ergosterol and peroxyergosterol as active compounds of hygrophoropsis aurantiaca and in vitro antiproliferative activity of isolated ergosterol peroxide. Molecules 2016, 21, 946. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, Q.; Zhang, J.; Lin, P.; Dang, J. An Integrated Chromatographic Strategy for the Large-Scale Extraction of Ergosterol from Tulasnellaceae sp. Separations 2022, 9, 176. https://doi.org/10.3390/separations9070176
Wang Z, Wang Q, Zhang J, Lin P, Dang J. An Integrated Chromatographic Strategy for the Large-Scale Extraction of Ergosterol from Tulasnellaceae sp. Separations. 2022; 9(7):176. https://doi.org/10.3390/separations9070176
Chicago/Turabian StyleWang, Ze, Qi Wang, Jinkui Zhang, Pengcheng Lin, and Jun Dang. 2022. "An Integrated Chromatographic Strategy for the Large-Scale Extraction of Ergosterol from Tulasnellaceae sp." Separations 9, no. 7: 176. https://doi.org/10.3390/separations9070176
APA StyleWang, Z., Wang, Q., Zhang, J., Lin, P., & Dang, J. (2022). An Integrated Chromatographic Strategy for the Large-Scale Extraction of Ergosterol from Tulasnellaceae sp. Separations, 9(7), 176. https://doi.org/10.3390/separations9070176