Preparation of Thermodesorption Tube Standards: Comparison of Usual Methods Using Accuracy Profile Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard and Tubes
2.2. Tube Preparation
- Manual deposit (MD) (Figure 1A) was performed by directly delivering the syringe content to the sorbent at the head of the tube. The needle was in direct contact with the retaining gauze.
- Gas stream assisted deposit (GSAD) (Figure 1B) was performed using the Calibration Solution Loading Rig (CSLR) from Markes International (Bridgend, UK). The tube was locked with a ferrule to the system and the solution was added via direct contact with the sorbent retaining gauze at the head of the tube through a septum. Helium, used as carrier gas at 50 mL/min flowrate. was applied at the same time as the introduction of the syringe. The syringe remained in place for 0.25 min and the helium was flown 3 min after the start of the deposit for a total volume of 150 mL of gas
- Vaporization followed by adsorption assisted by gas stream (VGSD) (Figure 1C) was performed using the Adsorbent Tube Injector System from Sigma-Aldrich (Saint-Quentin-Fallavier, France). The tube was locked with a ferrule to the system and the solution was injected in the vaporization chamber heated at 140 °C (stabilized at least 1 h before experiments). Helium was used as the carrier gas at a 50 mL/min flowrate and applied at the same time as the injection. The syringe remained in place for 0.25 min and the helium was flown 3 min after injection for a total volume of 150 mL of gas.
2.3. TD-GC×GC-MS Method
2.4. Accuracy Profile Evaluation
3. Results and Discussion
3.1. Separation of Standard Solution
3.2. Accuracy Profiles Determination
3.3. Score Calulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mariné, S.; Pedrouzo, M.; Maria Marcé, R.; Fonseca, I.; Borrull, F. Comparison between Sampling and Analytical Methods in Characterization of Pollutants in Biogas. Talanta 2012, 100, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Savareear, B.; Brokl, M.; Wright, C.; Focant, J.-F. Thermal Desorption Comprehensive Two-Dimensional Gas Chromatography Coupled to Time of Flight Mass Spectrometry for Vapour Phase Mainstream Tobacco Smoke Analysis. J. Chromatogr. A 2017, 1525, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Marcillo, A.; Weiß, B.M.; Widdig, A.; Birkemeyer, C. Challenges of Fast Sampling of Volatiles for Thermal Desorption Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2020, 1617, 460822. [Google Scholar] [CrossRef] [PubMed]
- Gallego, E.; Roca, F.J.; Perales, J.F.; Guardino, X.; Gadea, E. Development of a Method for Determination of VOCs (Including Methylsiloxanes) in Biogas by TD-GC/MS Analysis Using SupelTM Inert Film Bags and Multisorbent Bed Tubes. Int. J. Environ. Anal. Chem. 2015, 95, 291–311. [Google Scholar] [CrossRef]
- Stierlin, É.; Nicolè, F.; Costes, T.; Fernandez, X.; Michel, T. Metabolomic Study of Volatile Compounds Emitted by Lavender Grown under Open-Field Conditions: A Potential Approach to Investigate the Yellow Decline Disease. Metabolomics 2020, 16, 31. [Google Scholar] [CrossRef]
- Cuccia, L.; Bourdon, R.; Dugay, J.; Bontemps, D.; Carrette, P.-L.; Vial, J. Novel Approach for the Quantitative Analysis of MEA Degradation Products Present in Gas Effluent of CO2 Capture Process by Thermal Desorption–Gas Chromatography–Mass Spectrometry: Development and Validation. Int. J. Greenh. Gas Control 2017, 60, 110–119. [Google Scholar] [CrossRef]
- Hilaire, F.; Basset, E.; Bayard, R.; Gallardo, M.; Thiebaut, D.; Vial, J. Comprehensive Two-Dimensional Gas Chromatography for Biogas and Biomethane Analysis. J. Chromatogr. A 2017, 1524, 222–232. [Google Scholar] [CrossRef]
- Demeestere, K.; Dewulf, J.; De Roo, K.; De Wispelaere, P.; Van Langenhove, H. Quality Control in Quantification of Volatile Organic Compounds Analysed by Thermal Desorption–Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2008, 1186, 348–357. [Google Scholar] [CrossRef]
- Besis, A.; Georgiadou, E.; Samara, C. Odor-Active Volatile Organic Compounds along the Seafront of Thessaloniki, Greece. Implications for Sources of Nuisance Odor. Sci. Total Environ. 2021, 799, 149388. [Google Scholar] [CrossRef]
- Scheepers, P.T.J.; de Werdt, L.; van Dael, M.; Anzion, R.; Vanoirbeek, J.; Duca, R.C.; Creta, M.; Godderis, L.; Warnakulasuriya, D.T.D.; Devanarayana, N.M. Assessment of Exposure of Gas Station Attendants in Sri Lanka to Benzene, Toluene and Xylenes. Environ. Res. 2019, 178, 108670. [Google Scholar] [CrossRef]
- Marlet, C.; Lognay, G. Development and Validation by Accuracy Profile of a Method for the Analysis of Monoterpenes in Indoor Air by Active Sampling and Thermal Desorption-Gas Chromatography-Mass Spectrometry. Talanta 2010, 82, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-Y.; Park, H.; Seo, Y.; Yun, J.; Kwon, J.; Park, K.-W.; Han, S.-B.; Oh, K.C.; Jeon, J.-M.; Cho, K.-S. Emission Characteristics of Particulate Matter, Odors, and Volatile Organic Compounds from the Grilling of Pork. Environ. Res. 2020, 183, 109162. [Google Scholar] [CrossRef] [PubMed]
- Palmisani, J.; Abenavoli, C.; Famele, M.; Di Gilio, A.; Palmieri, L.; de Gennaro, G.; Draisci, R. Chemical Characterization of Electronic Cigarette (e-Cigs) Refill Liquids Prior to EU Tobacco Product Directive Adoption: Evaluation of BTEX Contamination by HS-SPME-GC-MS and Identification of Flavoring Additives by GC-MS-O. Atmosphere 2020, 11, 374. [Google Scholar] [CrossRef]
- Bessonneau, V.; Mosqueron, L.; Berrubé, A.; Mukensturm, G.; Buffet-Bataillon, S.; Gangneux, J.-P.; Thomas, O. VOC Contamination in Hospital, from Stationary Sampling of a Large Panel of Compounds, in View of Healthcare Workers and Patients Exposure Assessment. PLoS ONE 2013, 8, e55535. [Google Scholar] [CrossRef] [PubMed]
- Hubert, P.; Nguyen-Huu, J.J.; Boulanger, B.; Chapuzet, E.; Cohen, N.; Compagnon, P.A.; Dewé, W.; Feinberg, M.; Laurentie, M.; Mercier, N.; et al. Validation Des Procédures Analytiques Quantitatives: Harmonisation Des Démarches Partie II-Statistiques. STP Pharma Prat 2006, 16, 30–60. [Google Scholar]
- Feinberg, M. Validation of Analytical Methods Based on Accuracy Profiles. J. Chromatogr. A 2007, 1158, 174–183. [Google Scholar] [CrossRef]
- Cuzuel, V.; Brunet, J.; Rey, A.; Dugay, J.; Vial, J.; Pichon, V.; Carrette, P.-L. Validation of a Liquid Chromatography Tandem Mass Spectrometry Method for Targeted Degradation Compounds of Ethanolamine Used in CO2 Capture: Application to Real Samples. Oil Gas Sci. Technol.–Rev. IFP Energ. Nouv. 2014, 69, 821–832. [Google Scholar] [CrossRef]
- Combes, A.; El Abdellaoui, S.; Sarazin, C.; Vial, J.; Mejean, A.; Ploux, O.; Pichon, V. Validation of the Analytical Procedure for the Determination of the Neurotoxin β-N-Methylamino-l-Alanine in Complex Environmental Samples. Anal. Chim. Acta 2013, 771, 42–49. [Google Scholar] [CrossRef]
- Marini, R.D.; Servais, A.-C.; Rozet, E.; Chiap, P.; Boulanger, B.; Rudaz, S.; Crommen, J.; Hubert, P.; Fillet, M. Nonaqueous Capillary Electrophoresis Method for the Enantiomeric Purity Determination of S-Timolol Using Heptakis(2,3-Di-O-Methyl-6-O-Sulfo)-β-Cyclodextrin: Validation Using the Accuracy Profile Strategy and Estimation of Uncertainty. J. Chromatogr. A 2006, 1120, 102–111. [Google Scholar] [CrossRef]
- Sghaier, L.; Cordella, C.B.Y.; Rutledge, D.N.; Watiez, M.; Breton, S.; Sassiat, P.; Thiebaut, D.; Vial, J. Validation of a Headspace Trap Gas Chromatography and Mass Spectrometry Method for the Quantitative Analysis of Volatile Compounds from Degraded Rapeseed Oil. J. Sep. Sci. 2016, 39, 1675–1683. [Google Scholar] [CrossRef]
- Remy, P.-A.; Pérès, C.; Dugay, J.; Corbi, E.; David, N.; Vial, J. How High-Resolution Mass Spectrometry Can Help for the Accurate Quantification of Difficult Fragrance Allergens. Flavour Fragr. J. 2021, 36, 243–255. [Google Scholar] [CrossRef]
- ISO/TS 22176:2020; Cosmétiques—Méthodes Analytiques—Développement d’une Approche Globale pour la Validation des Méthodes Analytiques Quantitatives. AFNOR: Saint-Denis, France, 2020.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Saint Jores, C.; Klein, R.; Legendre, A.; Dugay, J.; Thiébaut, D.; Vial, J. Preparation of Thermodesorption Tube Standards: Comparison of Usual Methods Using Accuracy Profile Evaluation. Separations 2022, 9, 226. https://doi.org/10.3390/separations9080226
De Saint Jores C, Klein R, Legendre A, Dugay J, Thiébaut D, Vial J. Preparation of Thermodesorption Tube Standards: Comparison of Usual Methods Using Accuracy Profile Evaluation. Separations. 2022; 9(8):226. https://doi.org/10.3390/separations9080226
Chicago/Turabian StyleDe Saint Jores, Clément, Romain Klein, Agathe Legendre, José Dugay, Didier Thiébaut, and Jérôme Vial. 2022. "Preparation of Thermodesorption Tube Standards: Comparison of Usual Methods Using Accuracy Profile Evaluation" Separations 9, no. 8: 226. https://doi.org/10.3390/separations9080226
APA StyleDe Saint Jores, C., Klein, R., Legendre, A., Dugay, J., Thiébaut, D., & Vial, J. (2022). Preparation of Thermodesorption Tube Standards: Comparison of Usual Methods Using Accuracy Profile Evaluation. Separations, 9(8), 226. https://doi.org/10.3390/separations9080226