A Novel Method of Optimal Capacitor Placement in the Presence of Harmonics for Power Distribution Network Using NSGA-II Multi-Objective Genetic Optimization Algorithm
Abstract
:1. Introduction
2. System Modeling at Harmonic Frequencies
- Bus 1 as the slack bus with values determined for voltage and phase angle ;
- Buses 2 to m − 1 as ordinary linear buses (PQ or PV);
- Buses m to n as non-linear buses.
3. Optimal Capacitor Placement in the Presence of Harmonics
3.1. Objective Functions
3.2. Limitations
4. Proposed Multi-Objective Optimization NSGA-II Method
5. Selection the Ultimate Solution
6. Case Studies
7. Results
- The place and the capacity of capacitor banks play an important role in reducing losses and improving the total harmonic distortion (THD), whereas neglecting harmonics in the capacitor placement problem causes errors in the calculation.
- Lack of proper placement and size of capacitor banks, as well as inadequate modeling of nonlinear loads, not only removes capacitor banks from the optimal placement and size, but also causes further problems in power system quality.
- The use of capacitor banks solely in order to reduce THD is not recommended, due to the high cost it applies to the grid and the effects it has on the grid.
Author Contributions
Conflicts of Interest
Appendix A
From Bus | To Bus | R (%) | X (%) | Line Charge (%) | Length (miles) | Base Impedance (Ω) | Harmonic Only |
---|---|---|---|---|---|---|---|
1 | 2 | 0.431 | 1.204 | 0.0035 | 0.318 | 15.625 | 0 |
2 | 3 | 0.601 | 1.677 | 0.0049 | 0.443 | 15.625 | 0 |
3 | 4 | 0.316 | 0.882 | 0.0026 | 0.233 | 15.625 | 0 |
4 | 5 | 0.896 | 2.502 | 0.0073 | 0.661 | 15.625 | 0 |
5 | 6 | 0.295 | 0.824 | 0.0024 | 0.218 | 15.625 | 0 |
6 | 7 | 1.720 | 2.120 | 0.0046 | 0.455 | 15.625 | 0 |
7 | 8 | 4.070 | 3.053 | 0.0051 | 0.568 | 15.625 | 0 |
2 | 9 | 1.706 | 2.209 | 0.0043 | 0.451 | 15.625 | 0 |
1 | 20 | 2.910 | 3.768 | 0.0074 | 0.769 | 15.625 | 0 |
20 | 21 | 2.222 | 2.877 | 0.0056 | 0.587 | 15.625 | 0 |
21 | 22 | 4.803 | 6.218 | 0.0122 | 1.269 | 15.625 | 0 |
21 | 23 | 3.985 | 5.160 | 0.0101 | 1.053 | 15.625 | 0 |
23 | 24 | 2.910 | 3.768 | 0.0074 | 0.769 | 15.625 | 0 |
23 | 25 | 3.727 | 4.593 | 0.0100 | 0.985 | 15.625 | 0 |
25 | 26 | 2.208 | 2.720 | 0.0059 | 0.583 | 15.625 | 0 |
50 | 1 | 0.312 | 6.753 | 0 | 0 | 0 | 0 |
50 | 51 | 0.050 | 0.344 | 0 | 0 | 0 | 0 |
Bus Num | Bus Type | PGen (%) | QGen (%) | S(VA) (%) | PLoad (%) | QLoad (%) | Bus Volt (%) | Shunt Load (%) |
---|---|---|---|---|---|---|---|---|
1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 3 | 0 | 0 | 0 | 2 | 1.2 | 0 | −10.5 |
3 | 3 | 0 | 0 | 0 | 4 | 2.5 | 0 | −6 |
4 | 3 | 0 | 0 | 0 | 15 | 9.3 | 0 | −6 |
5 | 23 | 0 | 0 | 0 | 30 | 22.6 | 0 | −18 |
6 | 3 | 0 | 0 | 0 | 8 | 5 | 0 | 0 |
7 | 3 | 0 | 0 | 0 | 2 | 1.2 | 0 | −6 |
8 | 3 | 0 | 0 | 0 | 10 | 6.2 | 0 | 0 |
9 | 3 | 0 | 0 | 0 | 5 | 3.1 | 0 | 0 |
20 | 3 | 0 | 0 | 0 | 10 | 6.2 | 0 | −6 |
21 | 3 | 0 | 0 | 0 | 3 | 1.9 | 0 | −12 |
22 | 3 | 0 | 0 | 0 | 2 | 1.2 | 0 | 0 |
23 | 3 | 0 | 0 | 0 | 8 | 5 | 0 | 0 |
24 | 3 | 0 | 0 | 0 | 5 | 3.1 | 0 | −15 |
25 | 3 | 0 | 0 | 0 | 10 | 6.2 | 0 | −9 |
26 | 3 | 0 | 0 | 0 | 2 | 1.2 | 0 | 0 |
50 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | −12 |
51 | 1 | 0 | 0 | 0 | 0 | 0 | 105 | 0 |
Harmonic Number | Amplitude (%) | Harmonic Number | Amplitude (%) | Harmonic Number | Amplitude (%) |
---|---|---|---|---|---|
1 | 100 | 19 | 2.4 | 37 | 0.5 |
5 | 19.1 | 23 | 1.2 | 41 | 0.5 |
7 | 13.1 | 25 | 0.8 | 43 | 0.5 |
11 | 7.2 | 29 | 0.2 | 47 | 0.4 |
13 | 5.6 | 31 | 0.2 | 49 | 0.4 |
17 | 3.3 | 35 | 0.4 |
Appendix B
References
- Seyed Shenava, S.J.; Ghasemi, A. Planning and Distribution of Reactive Power Using the Parabolic HBMO Multi-Objective Method Based on Fuzzy Logic. Iran. Electr. Ind. J. Qual. Product. 2012, 1, 2. [Google Scholar]
- Eajal, A.A.; El-Hawary, M.E. Optimal Capacitor Placement and Sizing in Unbalanced Distribution Systems with Harmonics Consideration Using Particle Swarm Optimization. IEEE Trans. Power Deliv. 2010, 25, 173–1744. [Google Scholar] [CrossRef]
- Farahani, V.; Vahidi, B.; Abyaneh, H.A. Reconfiguration and Capacitor Placement Simultaneously for Energy Loss Reduction Based on an Improved Reconfiguration Method. IEEE Trans. Power Syst. 2012, 27, 587–595. [Google Scholar] [CrossRef]
- Tiwari, V.K.; Jain, S.K. Hardware Implementation of Poly Phase Decomposition-Based Wavelet Filters for Power System Harmonics Estimation. IEEE Trans. Instrum. Meas. 2016, 65, 1585–1595. [Google Scholar] [CrossRef]
- Sun, X.; Han, R.; Shen, H.; Wang, B.; Lu, Z.; Chen, Z. A Double-Resistive Active Power Filter System to Attenuate Harmonic Voltages of a Radial Power Distribution Feeder. IEEE Trans. Power Electron. 2016, 31, 6203–6216. [Google Scholar] [CrossRef]
- Kiani Moghaddam, M.; Salamnia, A.; Shivai, M.; Ameli, M.T. A New Multi-Objective Approach for Scheduling Active Power Filters Using Melody Search Algorithm and Fuzzy Satisfaction Method. Iran. Electr. Ind. J. Qual. Product. 2012, 9, 31–47. [Google Scholar]
- Li, D.; Zhu, Z.Q.; Qin, Y. A Novel Variable Reactor and Its Application to Shunt Power Quality Controller. IEEE Trans. Power Electron. 2016, 31, 4148–4159. [Google Scholar] [CrossRef]
- Mohammadi, M. Probabilistic harmonic load flow using fast point estimate method. IET Gener. Transm. Distrib. 2015, 9, 1790–1799. [Google Scholar] [CrossRef]
- Romero, A.A.; Zini, H.C.; Ratta, G. Modeling input parameter interactions in the possibilistic harmonic load flow. IET Gener. Transm. Distrib. 2012, 6, 528–538. [Google Scholar] [CrossRef]
- Romero, A.; Zini, H.C.; Ratta, G.; Dib, R. Harmonic load-flow approach based on the possibility theory. IET Gener. Transm. Distrib. 2011, 5, 393–404. [Google Scholar] [CrossRef]
- Khaboot, N.; Srithapon, C.; Siritaratiwat, A.; Khunkitti, P. Increasing Benefits in High PV Penetration Distribution System by Using Battery Energy Storage and Capacitor Placement Based on Salp Swarm Algorithm. Energies 2019, 12, 4817. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.T.; Horng, S.C.; Lin, C.F. Application of Ordinal Optimization to Reactive Volt-Ampere Sources Planning Problems. Energies 2019, 12, 2746. [Google Scholar] [CrossRef] [Green Version]
- Kishore, C.; Ghosh, S.; Karar, V. Symmetric Fuzzy Logic and IBFOA Solutions for Optimal Position and Rating of Capacitors Allocated to Radial Distribution Networks. Energies 2018, 11, 766. [Google Scholar] [CrossRef] [Green Version]
- Masoum, M.A.; Jafarian, A.; Lajevardi, M.; Fuchs, E.F.; Grady, W.M. Fuzzy Approach for Optimal Placement and Sizing of Capacitor Banks in the Presence of Harmonics. IEEE Trans. Power Deliv. 2004, 19, 822–831. [Google Scholar] [CrossRef]
- Farag, H.E.Z.; El Saadany, E.F. Optimum Shunt Capacitor Placement in Multi Microgrid Systems with Consideration of Islanded Mode of Operation. IEEE Trans. Sustain. Energy 2015, 6, 1435–1446. [Google Scholar] [CrossRef]
- Chang, G.W.; Chang, W.C.; Chuang, C.S.; Shih, D.Y. Fuzzy Logic and Immune-Based Algorithm for Placement and Sizing of Shunt Capacitor Banks in a Distorted Power Network. IEEE Trans. Power Deliv. 2011, 26, 2145–2153. [Google Scholar] [CrossRef]
- Huang, S.J.; Liu, X.Z. A Plant Growth-Based Optimization Approach Applied to Capacitor Placement in Power Systems. IEEE Trans. Power Syst. 2012, 27, 2138–2147. [Google Scholar] [CrossRef]
- Xia, D.; Heydt, G.T. Harmonic power flow studies—part I formulation and solution. IEEE Trans. Power Appar. Syst. 1982, 101, 1257–1265. [Google Scholar] [CrossRef]
- Xia, D.; Heydt, G.T. Harmonic power flow studies—part II implementation and practical application. IEEE Trans. Power Appar. Syst. 1982, 101, 1266–1270. [Google Scholar] [CrossRef]
- Masoum, M.A.; Fuchs, E.F. Transformer magnetizing current and iron core losses in harmonic power flow. IEEE Trans. Power Deliv. 1994, 9, 10–20. [Google Scholar] [CrossRef]
- Taher, S.A.; Karimian, A.; Hasani, M. A new method for optimal location and sizing of capacitors in distorted distribution networks using PSO algorithm. Simul. Model. Pract. Theory 2011, 19, 662–672. [Google Scholar] [CrossRef]
- Fuchs, E.; Masoum, M.A. Power Quality in Power Systems and Electrical Machines; Elsevier: New York, NY, USA, 2008; pp. 261–300. [Google Scholar]
- Shirmohamad, D.; Hong, H.W.; Semlyen, A. A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Trans. Power Syst. 1988, 3, 753–762. [Google Scholar] [CrossRef]
- Baghzouz, Y. Effects of nonlinear loads on optimal capacitor placement in radial feeders. IEEE Trans. Power Deliv. 1991, 6, 245–251. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Lo, K. Optimal choice of fixed and switched capacitors in radial distributions with distorted substation voltage. IEE Proc. Gener. Transm. Distrib. 1995, 142, 24–28. [Google Scholar] [CrossRef]
- Masoum, M.A.; Lajevardi, M.; Jafarian, M.; Fuchs, E.F. Optimal placement, replacement and sizing of capacitor banks in distorted distribution networks by genetic algorithms. IEEE Trans. Power Deliv. 2004, 19, 4. [Google Scholar] [CrossRef]
- Gou, B.; Abur, A. Optimal capacitor placement for improving power quality. In Proceedings of the IEEE Power Engineering Society Summer Meeting, Edmonton, AB, Canada, 18–22 July 1999; pp. 488–492. [Google Scholar]
- IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems. IEEE standard 519-1992. Available online: http://www.coe.ufrj.br/~richard/Acionamentos/IEEE519.pdf (accessed on 19 March 2020).
- Srinivas, N.; Deb, K. Multi Objective Optimization Using Non Dominated Sorting in Genetic Algorithms. Evol. Comput. 1994, 3, 221–248. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast Elitist Multi Objective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 2, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wang, C.; Zhu, J. Multi-Objective Optimization of a Spring Diaphragm Clutch on an Automobile Based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II). Math. Comput. Appl. 2016, 21, 47. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Bouzarkouna, Z.; Devegowda, Z. Multi-objective optimization for rapid and robust optimal oilfield development under geological uncertainty. Comput. Geosci. 2015, 19, 933–950. [Google Scholar] [CrossRef]
- Haghifam, M.-R.; Falaghi, H.; Malik, O.P. Risk-based distributed generation placement. IET Gener. Transm. Distrib. 2008, 2, 252–260. [Google Scholar] [CrossRef]
- Ramirez-Rosado, J.; Domigez-Navaro, J.A. Possibilistic model based on fuzzy sets for the multi objective optimal planning of electric power distribution networks. IEEE Trans. Power Syst. 2004, 19, 1801–1810. [Google Scholar] [CrossRef]
- Lai, Y.L.; Hwang, C.L. Fuzzy Mathematical Programming; Springer-Verlag: Berlin, Germany, 1992. [Google Scholar]
- Grady, W.M.; Samotyj, M.J.; Noyola, A.H. The application of network objective functions for actively minimizing the impact of voltage harmonics in power systems. IEEE Trans. Power Deliv. 1992, 7, 1379–1386. [Google Scholar] [CrossRef]
- Masoum, M.A.; Lajevardi, M.; Fuchs, E.F.; Grady, W.M. Optimal placement and sizing of fixed and switched capacitor banks under nonsinusoidal operating conditions. In Proceedings of the IEEE Summer Power Meeting, Chicago, IL, USA, 21–25 July 2002; pp. 807–813. [Google Scholar]
- Masoum, M.A.; Lajevardi, M.; Fuchs, E.F.; Grady, W.M. Application of local variations and maximum sensitivities selections for optimal placement of shunt capacitor banks under nonsinusoidal operating conditions. Int. J. Electr. Power Energy Syst. 2004, 26, 761–769. [Google Scholar] [CrossRef]
- Lajevardi, M.; Masoum, M.A. Genetically optimized fuzzy placement and sizing of capacitor banks in distorted distribution networks. IEEE Trans. Power Deliv. 2008, 23, 449–456. [Google Scholar] [CrossRef]
Goal | Minimum Cost | Minimum THDV max | Minimum VI | |
---|---|---|---|---|
Capacitor Banks (pu) | Q1 | 0 | 0 | 0 |
Q2 | 0 | 0 | 0 | |
Q3 | 0.960 | 0.359 | 0.070 | |
Q4 | 0 | 0.319 | ||
Q5 | 0.160 | 0 | 0.159 | |
Q6 | 0.359 | 0.638 | 0.319 | |
Q7 | 0.478 | 0 | 0.558 | |
Q8 | 0.119 | 0.997 | 0.239 | |
Q9 | 0 | 0.279 | 0 | |
Q10 | 0.159 | 0 | 0.159 | |
Q11 | 0.079 | 0 | 0.039 | |
Q12 | 0.239 | 0.319 | 0.279 | |
Q13 | 0.039 | 0 | 0.039 | |
Q14 | 0.119 | 0 | 0.159 | |
Q15 | 0.039 | 0 | 0 | |
Q16 | 0 | 0 | 0 | |
Q17 | 0.079 | 0 | 0 | |
Q18 | 0 | 0 | 0 | |
Maximum THDV (%) | 7.652336 | 2.491266 | 5.578439 | |
Maximum Voltage (pu) | 1.069789 | 1.08202 | 1.064749 | |
Minimum Voltage (pu) | 1.028922 | 1.020561 | 1.018906 | |
Loss (kw) | 2.36 × 105 | 2.79 × 105 | 2.41 × 105 | |
Total Cost($/year) | 1.34 × 105 | 1.57 × 105 | 1.36 × 105 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahimi Moghadam, M.; Falaghi, H.; Farhadi, M. A Novel Method of Optimal Capacitor Placement in the Presence of Harmonics for Power Distribution Network Using NSGA-II Multi-Objective Genetic Optimization Algorithm. Math. Comput. Appl. 2020, 25, 17. https://doi.org/10.3390/mca25010017
Ebrahimi Moghadam M, Falaghi H, Farhadi M. A Novel Method of Optimal Capacitor Placement in the Presence of Harmonics for Power Distribution Network Using NSGA-II Multi-Objective Genetic Optimization Algorithm. Mathematical and Computational Applications. 2020; 25(1):17. https://doi.org/10.3390/mca25010017
Chicago/Turabian StyleEbrahimi Moghadam, Majid, Hamid Falaghi, and Mahdi Farhadi. 2020. "A Novel Method of Optimal Capacitor Placement in the Presence of Harmonics for Power Distribution Network Using NSGA-II Multi-Objective Genetic Optimization Algorithm" Mathematical and Computational Applications 25, no. 1: 17. https://doi.org/10.3390/mca25010017
APA StyleEbrahimi Moghadam, M., Falaghi, H., & Farhadi, M. (2020). A Novel Method of Optimal Capacitor Placement in the Presence of Harmonics for Power Distribution Network Using NSGA-II Multi-Objective Genetic Optimization Algorithm. Mathematical and Computational Applications, 25(1), 17. https://doi.org/10.3390/mca25010017