The Complementary q-Lidstone Interpolating Polynomials and Applications
Abstract
:1. Introduction
2. Some Basic Results on the Interpolating Polynomial
3. The Complementary -Lidstone Interpolating Polynomials
- ;
- ;
- ;
- ;
- .
4. Applications
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lidstone, G. Notes on the extension of Aitken’s theorem (for polynomial interpolation) to the Everett types. Proc. Edinb. Math. Soc. 1929, 2, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.; Mansour, Z. q-analogs of Lidstone expansion theorem, two point Taylor expansion theorem, and Bernoulli polynomials. Anal. Appl. 2018. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambrdge, UK, 2004. [Google Scholar]
- Jackson, F. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Annaby, M.H.; Mansour, Z. q-Fractional Calculus and Equations; Springer: Berlin, Germany, 2012. [Google Scholar]
- Mansour, Z.; Al-Towailb, M. q-Lidstone polynomials and existence results for q-boundary value problems. Bound. Value Probl. 2017. [Google Scholar] [CrossRef] [Green Version]
- Costabile, F.; Dell’Accio, F.; Luceri, R. Explicit polynomial expansions of regular real functions by means of even order Bernoulli polynomials and boundary values. J. Comput. Appl. Math. 2005, 175, 77–99. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Pinelas, S.; Wong, P.J.Y. Complementary Lidstone interpolation and boundary value problems. J. Inequal. Appl. 2009. [Google Scholar] [CrossRef] [Green Version]
- Schultz, M. Error bounds for polynomial spline interpolation. Math. Comput. 1970, 24, 507–515. [Google Scholar] [CrossRef]
- Budakçi, G.; Oruç, H. A generalization of the Peano kernel and its applications. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018, 67, 229–241. [Google Scholar]
- Arzelà, C. Sulle funzioni di linee. Mem. Accad. Sci. Ist. Bologna Cl. Sci. Fis. Mat. 1895, 5, 55–74. [Google Scholar]
- Agarwal, R.P.; Wong, P.J.Y. Error Bounds for the Derivatives of Lidstone Interpolation and Applications. Pure Appl. Math. 1998, 212, 1–41. [Google Scholar]
- Costabile, F.A.; Dell’Accio, F. Lidstone approximation on the triangle. Appl. Numer. Math. 2005, 52, 339–361. [Google Scholar] [CrossRef]
- Costabile, F.A.; Dell’Accio, F.; Guzzardi, L. New bivariate polynomial expansion with boundary data on the simplex. Calcolo 2008, 45, 177–192. [Google Scholar] [CrossRef]
- Costabile, F.A.; Dell’Accio, F. New embedded boundary-type quadrature formulas for the simplex. Numer. Algorithms 2007, 45, 253–267. [Google Scholar] [CrossRef]
- Caira, R.; Dell’Accio, F.; Di Tommaso, F. On the bivariate Shepard–Lidstone operators. J. Comput. Appl. Math. 2012, 236, 1691–1707. [Google Scholar] [CrossRef] [Green Version]
- Costabile, F.A.; Dell’Accio, F.; Di Tommaso, F. Complementary Lidstone interpolation on scattered data sets. Numer. Algorithms 2013, 64, 157–180. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, Z.; Al-Towailb, M. The Complementary q-Lidstone Interpolating Polynomials and Applications. Math. Comput. Appl. 2020, 25, 34. https://doi.org/10.3390/mca25020034
Mansour Z, Al-Towailb M. The Complementary q-Lidstone Interpolating Polynomials and Applications. Mathematical and Computational Applications. 2020; 25(2):34. https://doi.org/10.3390/mca25020034
Chicago/Turabian StyleMansour, Zeinab, and Maryam Al-Towailb. 2020. "The Complementary q-Lidstone Interpolating Polynomials and Applications" Mathematical and Computational Applications 25, no. 2: 34. https://doi.org/10.3390/mca25020034
APA StyleMansour, Z., & Al-Towailb, M. (2020). The Complementary q-Lidstone Interpolating Polynomials and Applications. Mathematical and Computational Applications, 25(2), 34. https://doi.org/10.3390/mca25020034