Resolving Boundary Layers with Harmonic Extension Finite Elements
Abstract
:1. Introduction
2. Preliminaries
2.1. Boundary Layers
2.2. Adaptive Reference Elements
2.2.1. Shape Functions
2.2.2. Type of Reference Element
2.2.3. Mesh Generation and Refinement
2.3. Model Problems
2.3.1. Reaction-Diffusion Problem
2.3.2. Cylindrical Shells
3. Boundary Layer Resolution
4. Computational Asymptotic Analysis
4.1. Solving Parameter-Dependent Sequences of Linear Systems
4.2. Recovering Quantities of Interest
5. Numerical Experiments
5.1. Reaction–Diffusion
5.2. Pitkäranta Cylinder
5.2.1. On Numerical Locking
5.2.2. Convergence Results
5.2.3. Energy Dependence
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L.D.; Russo, A. Basic principles of virtual element methods. Math. Model. Methods Appl. Sci. 2013, 23, 199–214. [Google Scholar] [CrossRef]
- Di Pietro, D.A.; Droniou, J. The Hybrid High-Order Method for Polytopal Meshes; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Szabo, B.; Babuska, I. Finite Element Analysis; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Schwab, C. p- and hp-Finite Element Methods; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Hakula, H. Adaptive reference elements via harmonic extensions and associated inner modes. Comput. Math. Appl. 2020, 80, 2272–2288. [Google Scholar] [CrossRef]
- Hofreither, C.; Langer, U.; Weißer, S. Convection-adapted BEM-based FEM. ZAMM—J. Appl. Math. Mech./Z. Angew. Math. Mech. 2016, 96, 1467–1481. [Google Scholar] [CrossRef] [Green Version]
- Weißer, S. Arbitrary order Trefftz-like basis functions on polygonal meshes and realization in BEM-based FEM. Comput. Math. Appl. 2014, 67, 1390–1406. [Google Scholar] [CrossRef]
- Ovall, J.S.; Reynolds, S.E. A High-Order Method for Evaluating Derivatives of Harmonic Functions in Planar Domains. SIAM J. Sci. Comput. 2018, 40, A1915–A1935. [Google Scholar] [CrossRef] [Green Version]
- Anand, A.; Ovall, J.S.; Reynolds, S.E.; Weißer, S. Trefftz Finite Elements on Curvilinear Polygons. SIAM J. Sci. Comput. 2020, 42, A1289–A1316. [Google Scholar] [CrossRef]
- Pitkäranta, J. The problem of membrane locking in finite element analysis of cylindrical shells. Numer. Math. 1992, 61, 523–542. [Google Scholar] [CrossRef]
- Hakula, H.; Leino, Y.; Pitkäranta, J. Scale resolution, locking, and high-order finite element modelling of shells. Comput. Methods Appl. Mech. Eng. 1996, 133, 157–182. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica, version 13.0.1; Wolfram Research, Inc.: Champaign, IL, USA, 2021.
- Hakula, H.; Tuominen, T. Mathematica implementation of the high order finite element method applied to eigenproblems. Computing 2013, 95, 277–301. [Google Scholar] [CrossRef]
- Pitkäranta, J.; Matache, A.M.; Schwab, C. Fourier mode analysis of layers in shallow shell deformations. Comput. Methods Appl. Mech. Eng. 2001, 190, 2943–2975. [Google Scholar] [CrossRef] [Green Version]
- Chapelle, D.; Bathe, K.J. The Finite Element Analysis of Shells; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Malinen, M. On the classical shell model underlying bilinear degenerated shell finite elements: General shell geometry. Int. J. Numer. Methods Eng. 2002, 55, 629–652. [Google Scholar] [CrossRef]
- Hakula, H. hp-boundary layer mesh sequences with applications to shell problems. Comput. Math. Appl. 2014, 67, 899–917. [Google Scholar] [CrossRef]
- Saad, Y.; Yeung, M.; Erhel, J.; Guyomarch, F. A deflated version of the conjugate gradient algorithm. SIAM J. Sci. Comput. 2000, 21, 1909–1926. [Google Scholar] [CrossRef] [Green Version]
- Meerbergen, K. The solution of parametrized symmetric linear systems. SIAM J. Matrix Anal. Appl. 2003, 24, 1038–1059. [Google Scholar] [CrossRef]
- Pitkäranta, J.; Leino, Y.; Ovaskainen, O.; Piila, J. Shell Deformation states and the Finite Element Method: A Benchmark Study of Cylindrical Shells. Comput. Methods Appl. Mech. Eng. 1995, 128, 81–121. [Google Scholar] [CrossRef]
Case | Norm | Value Used | Exact |
---|---|---|---|
Reaction-Diffusion | 0.83673056017854 | ||
Cylinder (Clamped) | Squared energy | 2.6882879572571783 | - |
Cylinder (Free) | Squared energy | 7043.3120530934690 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakula, H. Resolving Boundary Layers with Harmonic Extension Finite Elements. Math. Comput. Appl. 2022, 27, 57. https://doi.org/10.3390/mca27040057
Hakula H. Resolving Boundary Layers with Harmonic Extension Finite Elements. Mathematical and Computational Applications. 2022; 27(4):57. https://doi.org/10.3390/mca27040057
Chicago/Turabian StyleHakula, Harri. 2022. "Resolving Boundary Layers with Harmonic Extension Finite Elements" Mathematical and Computational Applications 27, no. 4: 57. https://doi.org/10.3390/mca27040057
APA StyleHakula, H. (2022). Resolving Boundary Layers with Harmonic Extension Finite Elements. Mathematical and Computational Applications, 27(4), 57. https://doi.org/10.3390/mca27040057