Numerical Study of the Effect of a Heated Cylinder on Natural Convection in a Square Cavity in the Presence of a Magnetic Field
Abstract
:1. Introduction
2. Problem Definition
3. Mathematical Modeling
4. Numerical Details
5. Results and Discussion
5.1. Effect of Cylinder Position and Magnetic Field on Streamlines and Isotherms
5.2. Velocity and Temperature Profiles
5.3. Heat Transfer
6. Conclusions
- ■
- The distributions of flow field and isotherm patterns, velocity and temperature profiles, rate of heat transport for various cylinder configurations within the cavity fully depended on the Prandlt number (Pr), the Rayleigh number (Ra) and the Hartmann number (Ha) and the heated bottom wall of the cavity.
- ■
- The number of vortices increased within the streamlines for various configurations of the cavity due to enhance of the Hartmann number.
- ■
- The bonding of isotherm lines reduced close to the side walls of the cavity.
- ■
- The bend isotherm lines were observed adjacent to the base wall of the cavity.
- ■
- The velocity decreased for each heated cylinder configurations (LBC, RBC, LTC and RTC), as well as for the increasing value of the Hartmann number below the central portion of the cavity, but the velocity increased with the decrease in the Hartmann number.
- ■
- For the LBC and LTC configurations, the local Nusselt number decreased with the increase of the Hartmann number, but for the RBC and RTC configurations, the local Nusselt number increased with the increase in the Hartmann number.
- ■
- The mean Nusselt number for the LBC, RBC, LTC and RTC configurations increased due to the absence of the Hartmann number, but the mean Nusselt number decreased due to the increase in the Hartmann number.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
B0 | Magnetic field |
Cp | Specific heat at constant pressure (J/kg·K) |
g | Gravitational acceleration (m/s2) |
h | Convective heat transfer coefficient (W/m2·K) |
Ha | Hartmann number |
k | Thermal conductivity of fluid (W/m·K) |
K | Thermal conductivity ratio fluid |
N | Non-dimensional distance |
Nuav | Mean Nusselt number |
Nulocal | Local Nusselt number |
P | Non-dimensional pressure |
p | Pressure |
Pr | Prandtl number |
Ra | Rayleigh number |
T | Non-dimensional temperature |
U | Dimensionless horizontal velocity |
u | Velocity in x-direction (m/s) |
V | Dimensionless vertical velocity |
v | Velocity in y-direction (m/s) |
x, y | Cartesian coordinates |
X, Y | Dimensionless Cartesian coordinates |
Greek symbols | |
α | Thermal diffusivity (m2/s) |
β | Coefficient of thermal expansion (K−1) |
θ | Temperature of fluid |
∆θ | Discrepancy of temperature |
μ | Dynamic viscosity of the fluid (Pa·s) |
ν | Kinematic viscosity of the fluid (m2/s) |
r | Fluid density (kg/m3) |
σ | Fluid electrical conductivity (Ω−1m−1) |
Abbreviations | |
LBC | Left bottom heated cylinder |
LTC | Left top heated cylinder |
RTC | Right top heated cylinder |
RBC | Right bottom heated cylinder |
References
- Ostrach, S. Natural convection in enclosure. ASME J. Heat Transf. 1988, 110, 1175–1190. [Google Scholar] [CrossRef]
- Krakov, M.S.; Nikiforov, I.V. Influence of vertical uniform outer magnetic field on thermomagnetic convection in square cavity. Magnetohydrodynamics 2001, 21, 125–145. [Google Scholar] [CrossRef]
- Kalita, J.C.; Dalal, D.C.; Dass, A.K. Fully Compact Higher-Order Computation of Steady-State Natural Convection in a Square Cavity. Phys. Rev. E 2001, 64, 066703. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Wee, K.H.A. Numerical Simulation of Natural Convection in a Square Cavity by SIMPLE-Generalized Differential Quadrature Method. Comput. Fluids 2002, 31, 209–226. [Google Scholar] [CrossRef]
- Basak, T.; Roy, S.; Balakrishnan, A.R. Effects of thermal boundary conditions on natural convection flows within a square cavity. Int. J. Heat Mass Transf. 2006, 49, 4525–4535. [Google Scholar] [CrossRef]
- Deng, Q. Fluid flow and heat transfer characteristics of natural convection in square cavities due to discrete source–sink pairs. Int. J. Heat Mass Transf. 2008, 51, 5949–5957. [Google Scholar] [CrossRef]
- Pirmohammadi, M.; Ghassemi, M.; Sheikhzadeh, G.A. Effect of a Magnetic Field on Buoyancy-Driven Convection in Differentially Heated Square Cavity. IEEE Trans. Magn. 2009, 45, 407–411. [Google Scholar] [CrossRef]
- Nithyadevi, N.; Kandaswamy, P.; Sundari, S.M. Magnetoconvection in a square cavity with partially active vertical walls: Time periodic boundary condition. Int. J. Heat Mass Transf. 2009, 52, 1945–1953. [Google Scholar] [CrossRef]
- Hamimid, S.; Guellal, M.; Amroune, A.; Zeraibi, N. Effect of a Porous Layer on the Flow Structure and Heat Transfer in a Square Cavity. Fluid Dyn. Mater. Process. 2012, 8, 69–90. [Google Scholar] [CrossRef]
- Jani, S.; Mahmoodi, M.; Amini, M. Magnetohydrodynamic Free Convection in a Square Cavity Heated from Below and Cooled from Other Walls. Int. J. Mech. Ind. Sci. Eng. 2013, 7, 750–755. [Google Scholar] [CrossRef]
- Lee, H.; Doo, J.; Ha, M.; Yoon, H. Effects of thermal boundary conditions on natural convection in a square enclosure with an inner circular cylinder locally heated from the bottom wall. Int. J. Heat Mass Transf. 2013, 65, 435–450. [Google Scholar] [CrossRef]
- Hussein, A.K.; Awad, M.M.; Kolsi, L.; Fathinia, F.; Adegun, I.K. A comprehensive review of transient natural convection flow in enclosures. J. Basic Appl. Sci. Res. 2014, 11, 17–27. [Google Scholar]
- Park, Y.; Ha, M.; Choi, C.; Park, J. Natural convection in a square enclosure with two inner circular cylinders positioned at different vertical locations. Int. J. Heat Mass Transf. 2014, 77, 501–518. [Google Scholar] [CrossRef]
- Hossain, M.S.; Alim, M.A. MHD free convection within trapezoidal cavity with non-uniformly heated bottom wall. Int. J. Heat Mass Transf. 2014, 69, 327–336. [Google Scholar] [CrossRef]
- Singh, A.K.; Chandran, P.; Sacheti, N.C. Effect of perpendicular magnetic field on free convection in a rectangular cavity. Sultan Qaboos Univ. J. Sci. 2015, 20, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.G.; Ha, M.Y.; Park, J. Natural convection in a square enclosure with four circular cylinders positioned at different rectangular locations. Int. J. Heat Mass Transf. 2015, 81, 490–511. [Google Scholar] [CrossRef]
- Hossain, M.S.; Alim, M.A.; Kabir, K.H. Numerical Analysis on MHD Natural Convection within Trapezoidal Cavity Having Circular Block. Am. J. Appl. Math. Stat. 2016, 4, 161–168. [Google Scholar] [CrossRef]
- Seo, Y.M.; Park, Y.G.; Kim, M.; Yoon, H.S.; Ha, M.Y. Two-dimensional flow instability induced by natural convection in a square enclosure with four inner cylinders. part i: Effect of horizontal position of inner cylinders. Int. J. Heat Mass Transf. 2017, 113, 1306–1318. [Google Scholar] [CrossRef]
- Seo, Y.M.; Mun, G.S.; Park, Y.G.; Ha, M.Y. Two-dimensional flow instability induced by natural convection in a square enclosure with four inner cylinders. part ii: Effect of various positions of inner cylinders. Int. J. Heat Mass Transf. 2017, 113, 1319–1331. [Google Scholar] [CrossRef]
- Siddiki, M.N.A.A.; Habiba, F.; Chowdhury, R. Effect of Buoyancy Force on the Flow Field in a Square Cavity with Heated from Below. Int. J. Discret. Math. 2017, 2, 43–47. [Google Scholar] [CrossRef]
- Hossain, M.S.; Alim, M.A.; Andallah, L.S. Numerical Investigation of Natural Convection Flow in a Trapezoidal Cavity with Non-uniformly Heated Triangular Block Embedded Inside. J. Adv. Math. Comput. Sci. 2018, 28, 1–30. [Google Scholar] [CrossRef]
- Feldman, Y. Oscillatory instability of 2D natural convection flow in a square enclosure with a tandem of vertically aligned cylinders. Fluid Dyn. 2018, 50, 51–410. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Alim, M.A.; Andallah, L.S. A comprehensive analysis of natural convection in a trapezoidal cavity with magnetic field and cooled triangular obstacle of different orientations. AIP Conf. Proc. 2019, 2121, 030003. [Google Scholar] [CrossRef]
- Laouer, A.; Djeghiour, R. Lattice Boltzmann Simulation of Magnetohydrodynamic Free Convection in a Square Enclosure with Non-uniform Heating of the Bottom Wall. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 59, 13–28. [Google Scholar]
- Fayz-Al-Asad, M.; Munshi, M.J.H.; Sarker, M.M.A. Effect of fin length and location on natural convection heat transfer in a wavy cavity. Int. J. Sci. Tech. 2020, 7, 070303. [Google Scholar] [CrossRef]
- Hossain, M.S.; Alim, M.A.; Andallah, L.S. Numerical Simulation of MHD Natural Convection Flow Within Porous Trapezoidal Cavity With Heated Triangular Obstacle. Int. J. Appl. Comput. Math. 2020, 6, 166. [Google Scholar] [CrossRef]
- Liao, C.; Li, W. Assessment of the magnetic field influence on heat transfer transition of natural convection within a square cavity. Case Stud. Therm. Eng. 2021, 28, 101638. [Google Scholar] [CrossRef]
- Shahid, H.; Yaqoob, I.; Khan, W.A.; Aslam, M. Multi relaxation time Lattice Boltzmann analysis of lid-driven rectangular cavity subject to various obstacle configurations. Int. Commun. Heat Mass Transf. 2021, 129, 105658. [Google Scholar] [CrossRef]
- Khan, Z.H.; Hamid, M.; Khan, W.A.; Sun, L.; Liu, H. Thermal non-equilibrium natural convection in a trapezoidal porous cavity with heated cylindrical obstacles. Int. Commun. Heat Mass Transf. 2021, 126, 105460. [Google Scholar] [CrossRef]
- Fayz-Al-Asad, M.; Alam, M.N.; Rashad, A.M.; Sarker, M.M.A. Impact of undulation on magneto-free convective heat transport in an enclosure having vertical wavy sides. Int. Commun. Heat Mass Transf. 2021, 127, 105579. [Google Scholar] [CrossRef]
- Fayz-Al-Asad, M.; Alam, M.N.; Tunç, C.; Sarker, M.M.A. Heat transport exploration of free convection flow inside enclosure having vertical wavy walls. J. Appl. Comput. 2021, 7, 520–527. [Google Scholar] [CrossRef]
- Fayz-Al-Asad, M.; Alam, M.N.; Ahmad, H.; Sarker, M.M.A.; Alsulami, M.D.; Gepreel, K.A. Impact of a closed space rectangular heat source on natural convective flow through triangular cavity. Results Phys. 2021, 23, 104011. [Google Scholar] [CrossRef]
- Fayz-Al-Asad, M.; Yavuz, M.; Alam, M.N.; Sarker, M.M.A.; Bazighifan, O. Influence of Fin Length on Magneto-Combined Convection Heat Transfer Performance in a Lid-Driven Wavy Cavity. Fractal Fract. 2021, 5, 107. [Google Scholar] [CrossRef]
- Xiong, P.Y.; Hamid, A.; Iqbal, K.; Irfan, M. Numerical simulation of mixed convection flow and heat transfer in the lid-driven triangular cavity with different obstacle configurations. Int. Commun. Heat Mass Transf. 2021, 123, 105202. [Google Scholar] [CrossRef]
- Alshare, A.; Abderrahmane, A.; Guedri, K.; Younis, O.M.; AliH, M.; Al-Kouz, W. Hydrothermal and Entropy Investigation of Nanofluid Natural Convection in a Lid-Driven Cavity Concentric with an Elliptical Cavity with a Wavy Boundary Heated from Below. Nanomaterials 2022, 12, 1392. [Google Scholar] [CrossRef]
- Asad, M.F.A.; Hosssain, A.; Sarker, M.M.A. Numerical investigation of MHD mixed convection heat transfer having vertical fin in a lid-driven square cavity. AIP Conf. Proc. 2019, 2121, 030023. [Google Scholar] [CrossRef]
- Versaci, M.; Jannelli, A.; Morabito, F.C.; Angiulli, G. A semi-linear elliptic model for a circular membrane MEMS device considering the effect of the fringing field. Sensors 2021, 21, 5237. [Google Scholar] [CrossRef]
- Islam, T.; Yavuz, M.; Parveen, N.; Fayz-Al-Asad, M. Impact of Non-Uniform Periodic Magnetic Field on Unsteady Natural Convection Flow of Nanofluids in Square Enclosure. Fractal Fract. 2022, 6, 101. [Google Scholar] [CrossRef]
- Fayz-Al-Asad, M.; Sarker, M.M.A.; Munshi, M.J.H. Numerical investigation of natural convection flow in a hexagonal enclosure having vertical fin. J. Sci. Res. 2019, 11, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Sene, N. Second-grade fluid with Newtonian heating under Caputo fractional derivative: Analytical investigations via Laplace transforms. Math. Model. Numer. Simul. Appl. 2022, 2, 13–25. [Google Scholar] [CrossRef]
- Yavuz, M.; Sene, N.; Yıldız, M. Analysis of the influences of parameters in the fractional second-grade fluid dynamics. Mathematics 2022, 10, 1125. [Google Scholar] [CrossRef]
- Taylor, C.; Hood, P. A numerical Solution of the Navier-Stokes Equations Using Finite Element Technique. Comput. Fluids 1973, 1, 73–100. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method, 4th ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Dechaumphai, P. Finite Element Method in Engineering, 2nd ed.; Chulalongkorn University Press: Bangkok, Thailand, 1999. [Google Scholar]
Nodes | 16,030 | 19,099 | 21,560 | 23,780 | 32,945 | 37,682 |
Elements | 2408 | 2878 | 3258 | 3568 | 4978 | 5696 |
Nuav | 0.130212 | 0.130203 | 0.137988 | 0.141502 | 0.141502 | 0.1415 |
Time (s) | 15.913 | 19.308 | 22.568 | 26.879 | 36.5135 | 38.495 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.S.; Fayz-Al-Asad, M.; Mallik, M.S.I.; Yavuz, M.; Alim, M.A.; Khairul Basher, K.M. Numerical Study of the Effect of a Heated Cylinder on Natural Convection in a Square Cavity in the Presence of a Magnetic Field. Math. Comput. Appl. 2022, 27, 58. https://doi.org/10.3390/mca27040058
Hossain MS, Fayz-Al-Asad M, Mallik MSI, Yavuz M, Alim MA, Khairul Basher KM. Numerical Study of the Effect of a Heated Cylinder on Natural Convection in a Square Cavity in the Presence of a Magnetic Field. Mathematical and Computational Applications. 2022; 27(4):58. https://doi.org/10.3390/mca27040058
Chicago/Turabian StyleHossain, Muhammad Sajjad, Muhammad Fayz-Al-Asad, Muhammad Saiful Islam Mallik, Mehmet Yavuz, Md. Abdul Alim, and Kazi Md. Khairul Basher. 2022. "Numerical Study of the Effect of a Heated Cylinder on Natural Convection in a Square Cavity in the Presence of a Magnetic Field" Mathematical and Computational Applications 27, no. 4: 58. https://doi.org/10.3390/mca27040058
APA StyleHossain, M. S., Fayz-Al-Asad, M., Mallik, M. S. I., Yavuz, M., Alim, M. A., & Khairul Basher, K. M. (2022). Numerical Study of the Effect of a Heated Cylinder on Natural Convection in a Square Cavity in the Presence of a Magnetic Field. Mathematical and Computational Applications, 27(4), 58. https://doi.org/10.3390/mca27040058