Chemical MHD Hiemenz Flow over a Nonlinear Stretching Sheet and Brownian Motion Effects of Nanoparticles through a Porous Medium with Radiation Effect
Abstract
:1. Introduction
2. Mathematical Formulation
- and axes are taken as the way of sheet motion and normal to the motion.
- The nonlinear stretching velocity of the flat plate is assumed as , where is a constant indicating the direction of the plate along the positive or negative side of the axis, depending on whether or , and a stationary plate when , is the power-law velocity exponent, and is the characteristic length.
- The ambient fluid’s moving velocity has the form , where is a constant.
- A variable magnetic field where is a constant is assumed along the plate.
- Stagnation point flow.
- Micropolar liquid model.
- Joule heat, radiation, source/sink, porous medium and chemical reaction effects are deemed.
- Thermophoresis and Brownian motion effects are taken into account.
3. Methodology (SLM)
4. Results and Discussion
5. Conclusions
- The temperature profile is significantly driven by the heat source parameter.
- Thermal radiation and thermophoresis parameters lead enhanced temperature.
- The concentration profile lowers as both the Lewis number and the chemical reaction parameters expand.
- The rate of heat transfer elevates with and .
- The rate of mass transfer elevates with and .
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abu-Nada, E.; Oztop, H.F. Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. Int. J. Heat Fluid Flow 2009, 30, 669–678. [Google Scholar] [CrossRef]
- Zargartalebi, H.; Ghalambaz, M.; Noghrehabadi, A.; Chamkha, A.J. Stagnation point heat transfer of nanofluids toward stretching sheets with variable thermo-physical properties. Adv. Power Technol. 2015, 26, 819–829. [Google Scholar] [CrossRef]
- Makinde, O.D.; Aziz, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 2011, 50, 1326–1332. [Google Scholar] [CrossRef]
- Mohamad, A.Q.; Khan, I.; Shafie, S. Unsteady free convection flow of rotating MHD second grade fluid in a porous medium over an oscillating plate. AIP Conf. Proceeding 2016, 1750, 030013. [Google Scholar]
- Mbeledogu, I.U.; Ogulu, A. Heat and mass transfer of an unsteady MHD natural convection flow of a rotating fluid past a vertical flat plate in the presence of radiative heat transfer. Int. J. Heat Mass Transf. 2007, 50, 1902–1908. [Google Scholar] [CrossRef]
- Salah, F.; Aziz, Z.A.; Ching, D.L.C. New exact solutions for MHD transient rotating flow of a second-grade fluid in a porous medium. J. Appl. Math. 2011, 823034, 2011. [Google Scholar] [CrossRef]
- Sivanandam, S.; Marimuthu, B.; Alzahrani, A.K. Numerical study on influence of magnetic field and discrete heating on free convection in a porous container. Sci. Iran. 2022, 3063–3071. [Google Scholar]
- Sivasankaran, S.; Narrein, K. Influence of geometry and magnetic field on convective flow of nanofluids in trapezoidal microchannel heat sink. Iran. J. Sci. Technol. Trans. Mech. Eng. 2020, 44, 373–382. [Google Scholar] [CrossRef]
- Sivasankaran, S.; Malleswaran, A.; Bhuvaneswari, M.; Balan, P. Hydro-magnetic mixed convection in a lid-driven cavity with partially thermally active walls. Sci. Iran. 2017, 24, 153–163. [Google Scholar] [CrossRef]
- Sivasankaran, S.; Ananthan, S.S.; Abdul Hakeem, A.K. Mixed convection in a lid-driven cavity with sinusoidal boundary temperature at the bottom wall in the presence of magnetic field. Sci. Iran. 2016, 23, 1027–1036. [Google Scholar] [CrossRef]
- Sivasankaran, S.; Chandrapushpam, T.; Bhuvaneswari, M.; Karthikeyan, S.; Alzahrani, A.K. Effect of chemical reaction on double diffusive MHD squeezing copper water nanofluid flow between parallel plates. J. Mol. Liq. 2022, 368, 120768. [Google Scholar] [CrossRef]
- Devi, L.; Niranjan, H.; Sivasankaran, S. Effects of chemical reactions, radiation, and activation energy on MHD buoyancy induced nano fluidflow past a vertical surface. Sci. Iran. 2022, 29, 90–100. [Google Scholar]
- Yesodha, P.; Bhuvaneswari, M.; Sivasankaran, S.; Saravanan, K. Convective heat and mass transfer of chemically reacting fluids with activation energy along with Soret and Dufour effects. Mater. Today Proc. 2021, 42, 600–606. [Google Scholar] [CrossRef]
- Sivanandam, S.; Marimuthu, B.; Arumugam, M.; Bhose, G. Stratification, slip and cross diffusion impacts on time depending convective stream with chemical reaction. Math. Model. Eng. Probl. 2019, 6, 581–588. [Google Scholar] [CrossRef]
- Ariel, P.D. Hiemenz flow in hydromagnetics. Acta Mech. 1994, 103, 31–43. [Google Scholar] [CrossRef]
- Motsa, S.S.; Khan, Y.; Shateyi, S. A new numerical solution of Maxwell fluid over a shrinking sheet in the region of a stagnation point. Math. Probl. Eng. 2012, 290615, 2012. [Google Scholar] [CrossRef]
- Parand, K.; Lotfi, Y.; Rad, J.A. An efficient analytic approach for solving Hiemenz flow through a porous medium of a non-Newtonian Rivlin-Ericksen fluid with heat transfer. Nonlinear Eng. 2018, 7, 287–301. [Google Scholar] [CrossRef]
- Waqas, H.; Imran, M.; Muhammad, T.; Sait, S.M.; Ellahi, R. On bio-convection thermal radiation in Darcy–Forchheimer flow of nanofluid with gyrotactic motile microorganism under Wu’s slip over stretching cylinder/plate. Int. J. Numer. Methods Heat Fluid Flow 2020, 31, 1520–1546. [Google Scholar] [CrossRef]
- Farooq, U.; Waqas, H.; Imran, M.; Alghamdi, M.; Muhammad, T. On melting heat transport and nanofluid in a nozzle of liquid rocket engine with entropy generation. J. Mater. Res. Technol. 2021, 14, 3059–3069. [Google Scholar] [CrossRef]
- Shahzad, A.; Imran, M.; Tahir, M.; Khan, S.A.; Akgül, A.; Abdullaev, S.; Yahia, I.S. Brownian motion and thermophoretic diffusion impact on Darcy-Forchheimer flow of bioconvective micropolar nanofluid between double disks with Cattaneo–Christov heat flux. Alex. Eng. J. 2023, 62, 1–15. [Google Scholar] [CrossRef]
- Hamid, A.; Khan, M. Unsteady mixed convective flow of Williamson nanofluid with heat transfer in the presence of variable thermal conductivity and magnetic field. J. Mol. Liq. 2018, 260, 436–446. [Google Scholar]
- Zhang, C.; Zheng, L.; Zhang, X.; Chen, G. MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl. Math. Model. 2015, 39, 165–181. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, M. Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation. Alex. Eng. J. 2017, 56, 55–62. [Google Scholar] [CrossRef]
- Bhuvaneswari, M.; Sivasankaran, S.; Malarselvi, A.; Ganga, B. Radiation and cross diffusion on unsteady chemically reactive convective flow through an extended surface in heat generating porous medium. Int. J. Energy Technol. Policy 2021, 17, 494–509. [Google Scholar] [CrossRef]
- Reddy, V.S.; Kandasamy, J.; Sivanandam, S. Impacts of Casson Model on Hybrid Nanofluid Flow over a Moving Thin Needle with Dufour and Soret and Thermal Radiation Effects. Math. Comput. Appl. 2022, 28, 2. [Google Scholar] [CrossRef]
- Narayanaswamy, M.K.; Kandasamy, J.; Sivanandam, S. Go-MoS2/Water Flow over a Shrinking Cylinder with Stefan Blowing, Joule Heating, and Thermal Radiation. Math. Comput. Appl. 2022, 27, 110. [Google Scholar] [CrossRef]
- Jagan, K.; Sivasankaran, S. Three-Dimensional Non-Linearly Thermally Radiated Flow of Jeffrey Nanoliquid towards a Stretchy Surface with Convective Boundary and Cattaneo–Christov Flux. Math. Comput. Appl. 2022, 27, 98. [Google Scholar] [CrossRef]
- Uddin, M.J.; Khan, W.A.; Ismail, A.I. MHD forced convective laminar boundary layer flow of convectively heated moving vertical plate with radiation and transpiration effect. Plos ONE 2013, 8, 62664. [Google Scholar] [CrossRef]
- Ahmed, M.A.M.; Mohammed, M.E.; Khidir, A.A. On linearization method to MHD boundary layer convective heat transfer with low pressure gradient. Propuls. Power Res. 2015, 4, 105–113. [Google Scholar] [CrossRef]
- Salah, F.; Alzahrani, A.K.; Sidahmed, A.O.; Viswanathan, K.K. A note on thin-film flow of Eyring-Powell fluid on the vertically moving belt using successive linearization method. Int. J. Adv. Appl. Sci. 2019, 6, 17–22. [Google Scholar]
- Yih, K.A. MHD forced convection flow adjacent to a non-isothermal wedge. Int. Comm. Heat Mass Transf. 1999, 26, 819–827. [Google Scholar] [CrossRef]
Order | |||
---|---|---|---|
1 | 1.615243564 | 0.591309575 | 0.807258968 |
2 | 1.615264958 | 0.588594177 | 0.808486096 |
5 | 1.615264959 | 0.588587567 | 0.808488879 |
10 | 1.615264959 | 0.588587567 | 0.808488879 |
20 | 1.615264958 | 0.588587567 | 0.808488879 |
30 | 1.615264958 | 0.588587567 | 0.808488879 |
35 | 1.615264958 | 0.588587567 | 0.808488879 |
40 | 1.615264958 | 0.588587567 | 0.808488879 |
45 | 1.615264958 | 0.588587567 | 0.808488879 |
m | M | V | Uddin et al. [28] | SLM (Present) |
---|---|---|---|---|
−0.6 | 1 | −1.2465 | 1.831134 | 1.829965702 |
−0.6 | 1 | −0.3 | 0.754875 | 0.754875083 |
−0.6 | 1 | 0.5 | 0.147122 | 0.147122313 |
−0.6 | 1 | 1.1 | 0.008662 | 0.008662160 |
−0.7 | 2 | −1.2465 | 2.8552230 | 2.855222907 |
−0.7 | 2 | −0.3 | 1.4340566 | 1.434056645 |
−0.7 | 2 | 0.5 | 0.4700876 | 0.470087557 |
−0.7 | 2 | 1.1 | −0.0799084 | −0.079908545 |
−0.6 | 2 | −1.2465 | 2.8886778 | 2.888677771 |
−0.6 | 2 | −0.3 | 1.5013537 | 1.501353678 |
−0.6 | 2 | 0.5 | 0.5167744 | 0.516774431 |
−0.6 | 2 | 1.1 | −0.093447 | −0.093446596 |
m | Uddin et al. [28] | Yih [31] (Finite Difference) | SLM (Present) |
---|---|---|---|
−0.05 | 0.213483 | 0.213484 | 0.213483741 |
0.0 | 0.33206 | 0.332057 | 0.332057336 |
1/3 | 0.75745 | 0.757448 | 0.757447581 |
1.0 | 1.23259 | 1.232588 | 1.232587657 |
m | M | V | Nb | Nt | R | Q | Pr | Le | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5 | 2 | 0.3 | 0.2 | 0.1 | 0.1 | 1 | 1 | 0.2 | 0.1 | 1.036818487 | 0.466696358 | 0.727197663 |
0.5 | 1.615264958 | 0.588587567 | 0.808488879 | ||||||||||
1 | 2.037891791 | 0.691219392 | 0.884779820 | ||||||||||
2 | 2.691867471 | 0.861726041 | 1.022496729 | ||||||||||
1 | 2.782432421 | 0.858913310 | 1.020208245 | ||||||||||
2 | 2.955494943 | 0.853763691 | 1.016051769 | ||||||||||
3 | 3.119202610 | 0.849151404 | 1.012365107 | ||||||||||
4 | 3.274896834 | 0.844984821 | 1.009063514 | ||||||||||
−0.6 | 3 | 3.065259197 | 0.239179732 | 0.626117442 | |||||||||
4 | 4.274052296 | 0.291595855 | 0.647177685 | ||||||||||
5 | 5.241191366 | 0.344251921 | 0.669459499 | ||||||||||
0.2 | 5.388545930 | 0.341608410 | 0.668515318 | ||||||||||
0.3 | 5.532218947 | 0.339072211 | 0.667615489 | ||||||||||
0.7 | 6.074769939 | 0.329858959 | 0.664392561 | ||||||||||
1.0 | 6.453114860 | 0.662297603 | 0.662297603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salah, F.; Sidahmed, A.O.M.; Viswanathan, K.K. Chemical MHD Hiemenz Flow over a Nonlinear Stretching Sheet and Brownian Motion Effects of Nanoparticles through a Porous Medium with Radiation Effect. Math. Comput. Appl. 2023, 28, 21. https://doi.org/10.3390/mca28010021
Salah F, Sidahmed AOM, Viswanathan KK. Chemical MHD Hiemenz Flow over a Nonlinear Stretching Sheet and Brownian Motion Effects of Nanoparticles through a Porous Medium with Radiation Effect. Mathematical and Computational Applications. 2023; 28(1):21. https://doi.org/10.3390/mca28010021
Chicago/Turabian StyleSalah, Faisal, Abdelmgid O. M. Sidahmed, and K. K. Viswanathan. 2023. "Chemical MHD Hiemenz Flow over a Nonlinear Stretching Sheet and Brownian Motion Effects of Nanoparticles through a Porous Medium with Radiation Effect" Mathematical and Computational Applications 28, no. 1: 21. https://doi.org/10.3390/mca28010021
APA StyleSalah, F., Sidahmed, A. O. M., & Viswanathan, K. K. (2023). Chemical MHD Hiemenz Flow over a Nonlinear Stretching Sheet and Brownian Motion Effects of Nanoparticles through a Porous Medium with Radiation Effect. Mathematical and Computational Applications, 28(1), 21. https://doi.org/10.3390/mca28010021