A Novel Hybrid Computational Technique to Study Conformable Burgers’ Equation
Abstract
:1. Introduction
2. Formulation of Conformable Damped Burgers’ Equation
3. Time Discretization
4. Cubic Hermite Collocation Method
5. Application of Cubic Hermite Splines Collocation
6. Stability Analysis
7. Error Analysis
8. Numerical Results and Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdou, M.; Soliman, A. Variational iteration method for solving Burgers’ and coupled Burgers’ equations. J. Comput. Appl. Math. 2005, 181, 245–251. [Google Scholar] [CrossRef]
- Jaiswal, S.; Chopra, M.; Das, S. Numerical solution of non-linear partial differential equation for porous media using operational matrices. Math. Comput. Simul. 2019, 160, 138–154. [Google Scholar] [CrossRef]
- Majid, F.B.; Ranasinghe, A.I. Solution of the Burgers’ equation using an implicit linearizing transformation. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1861–1867. [Google Scholar] [CrossRef]
- Esen, A.; M Yagmurlu, N.; Tasbozan, O. Approximate analytical solution to time-fractional damped Burgers’ and Cahn-Allen equations. Appl. Math. Inf. Sci. 2013, 7, 1951–1956. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Akgül, A.; De la Sen, M. A Novel Homotopy Perturbation Method with Applications to Nonlinear Fractional Order KdV and Burger Equation with Exponential-Decay Kernel. J. Funct. Spaces 2021, 2021, 8770488. [Google Scholar] [CrossRef]
- Öziş, T.; Aksan, E.N.; Özdeş, A. A finite element approach for solution of Burgers’ equation. Appl. Math. Comput. 2003, 139, 417–428. [Google Scholar] [CrossRef]
- Kutluay, S.; Bahadir, A.R.; Özdeş, A. Numerical solution of one-dimensional Burgers’ equation: Explicit and exact-explicit finite difference methods. J. Comput. Appl. Math. 1999, 103, 251–261. [Google Scholar] [CrossRef]
- Clemence-Mkhope, D.P.; Rabeeb Ali, V.P.; Awasthi, A. Non-standard Finite Difference Based Numerical Method for Viscous Burgers’ Equation. Int. J. Appl. Comput. Math. 2020, 6, 154. [Google Scholar] [CrossRef]
- Arora, S.; Kaur, I. An efficient scheme for numerical solution of Burgers’ equation using quintic Hermite interpolating polynomials. Arab. J. Math. 2016, 5, 23–34. [Google Scholar] [CrossRef]
- Arora, S.; Kaur, I.; Tilahun, W. An exploration of quintic Hermite splines to solve Burgers’ equation. Arab. J. Math. 2020, 9, 19–36. [Google Scholar] [CrossRef]
- El-Hawary, H.M.; Abdel-Rahman, E.O. Numerical solution of the generalized Burger’s equation via spectral/spline methods. Appl. Math. Comput. 2005, 170, 267–279. [Google Scholar] [CrossRef]
- Maurya, D.K.; Singh, R.; Rajoria, Y.K. A mathematical model to solve the Burgers-Huxley equation by using new homotopy perturbation method. Int. J. Math. Eng. Manag. Sci. 2019, 4, 1483–1495. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Ganji, D.D.; Dinarvand, S. Explicit analytical solutions of the generalized Burger and Burger–Fisher equations by homotopy perturbation method. Numer. Methods Partial. Differ. Equ. Int. J. 2009, 25, 409–417. [Google Scholar] [CrossRef]
- Mittal, R.C.; Tripathi, A. Numerical solutions of generalized Burgers–Fisher and generalized Burgers–Huxley equations using collocation of cubic B-splines. Int. J. Comput. Math. 2015, 92, 1053–1077. [Google Scholar] [CrossRef]
- Arora, S.; Jain, R.; Kukreja, V.K. A robust Hermite spline collocation technique to study generalized Burgers-Huxley equation, generalized Burgers-Fisher equation and Modified Burgers’ equation. J. Ocean Eng. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Kumar, D.; Sharma, R.P. Numerical approximation of Newell-Whitehead-Segel equation of fractional order. Nonlinear Eng. 2016, 5, 81–86. [Google Scholar] [CrossRef]
- Nadeem, M.; He, J.H.; He, C.H.; Sedighi, H.M.; Shirazi, A. A numerical solution of nonlinear fractional newell-whitehead-segel equation using natural transform. TWMS J. Pure Appl. Math. 2022, 13, 168–182. [Google Scholar]
- Abbasbandy, S. Soliton solutions for the Fitzhugh–Nagumo equation with the homotopy analysis method. Appl. Math. Model. 2008, 32, 2706–2714. [Google Scholar] [CrossRef]
- Jiwari, R.; Gupta, R.K.; Kumar, V. Polynomial differential quadrature method for numerical solutions of the generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Ain Shams Eng. J. 2014, 5, 1343–1350. [Google Scholar] [CrossRef]
- Ragb, O.; Salah, M.; Matbuly, M.S.; Ersoy, H.; Civalek, O. Modeling and solution of reaction–diffusion equations by using the quadrature and singular convolution methods. Arab. J. Sci. Eng. 2023, 48, 4045–4065. [Google Scholar] [CrossRef]
- Ayebire, A.M.; Kaur, I.; Alemar, D.A.; Singh, M. A robust technique of cubic Hermite splines to study the non-linear reaction-diffusion equation with variable coefficients. AIMS Math. 2024, 9, 8192–8213. [Google Scholar] [CrossRef]
- Seadawy, A.R. Nonlinear wave solutions of the three-dimensional Zakharov–Kuznetsov–Burgers equation in dusty plasma. Phys. Stat. Mech. Appl. 2015, 439, 124–131. [Google Scholar] [CrossRef]
- Nagatani, T.; Emmerich, H.; Nakanishi, K. Burgers’ equation for kinetic clustering in traffic flow. Phys. Stat. Mech. Appl. 1998, 255, 158–162. [Google Scholar] [CrossRef]
- Bonkile, M.P.; Awasthi, A.; Lakshmi, C.; Mukundan, V.; Aswin, V.S. A systematic literature review of Burgers’ equation with recent advances. Pramana 2018, 90, 69. [Google Scholar] [CrossRef]
- Babolian, E.; Saeidian, J. Analytic approximate solutions to Burgers’, Fisher, Huxley equations and two combined forms of these equations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1984–1992. [Google Scholar] [CrossRef]
- Fakhari, A.; Domairry, G. Approximate explicit solutions of non-linear BBMB equations by homotopy analysis method and comparison with the exact solution. Phys. Lett. A 2007, 368, 64–68. [Google Scholar] [CrossRef]
- Peng, Y.Z.; Chen, W.L. A new similarity solution of the Burgers’ equation with linear damping. Czechoslov. J. Phys. 2006, 56, 317–322. [Google Scholar] [CrossRef]
- Song, L.; Zhang, H. Application of homotopy analysis method to fractional KdV–Burgers’–Kuramoto equation. Phys. Lett. A 2007, 367, 88–94. [Google Scholar] [CrossRef]
- Liu, J.G.; Zhang, J. A new approximate method to the time fractional damped Burgers’ equation. AIMS Math. 2023, 8, 13317–13324. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Qurashi, M.A.; Baleanu, D. Analysis of a new fractional model for damped Burgers’ equation. Open Phys. 2017, 15, 35–41. [Google Scholar] [CrossRef]
- Khan, M.J.; Nawaz, R.; Farid, S.; Iqbal, J. New iterative method for the solution of fractional damped Burgers’ and fractional Sharma-Tasso-Olver equations. Complexity 2018, 2018, 3249720. [Google Scholar] [CrossRef]
- Abd AL-Hussein, W.R.; Mahmood, A.; Kadhim, S.S.N.; AL-Azzawi, S.N. The approximate solution of fractional damped Burgers’ equation and its statistical properties. J. Phys. Conf. Ser. 2018, 1003, 012048. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Mukhtar, S.; Shah, R.; Ganie, A.H.; Moaddy, K. Solitary Waves Propagation Analysis in Nonlinear Dynamical System of Fractional Coupled Boussinesq-Whitham-Broer-Kaup Equation. Fractal Fract. 2023, 7, 889. [Google Scholar] [CrossRef]
- Balcı, E.; Öztürk, İ.; Kartal, S. Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative. Chaos Solitons Fractals 2019, 123, 43–51. [Google Scholar] [CrossRef]
- Acan, O.l.; Firat, O.; Keskin, Y. Conformable variational iteration method, conformable fractional reduced differential transform method and conformable homotopy analysis method for non-linear fractional partial differential equations. Waves Random Complex Media 2020, 30, 250–268. [Google Scholar] [CrossRef]
- Baleanu, D.; Agheli, B.; Al Qurashi, M.M. Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives. Adv. Mech. Eng. 2016, 8, 1687814016683305. [Google Scholar] [CrossRef]
- Güner, A.; Yalçınbaş, S. Legendre collocation method for solving non-linear differential equations. Math. Comput. Appl. 2013, 18, 521–530. [Google Scholar] [CrossRef]
- Kumar, S.; Atangana, A. Numerical solution of ABC space–time fractional distributed order reaction–diffusion equation. Numer. Methods Partial Differ. Equ. 2022, 38, 406–421. [Google Scholar] [CrossRef]
- Li, X.; Liu, X. A hybrid kernel functions collocation approach for boundary value problems with Caputo fractional derivative. Appl. Math. Lett. 2023, 142, 108636. [Google Scholar] [CrossRef]
- Abdelhakim, A.A.; Machado, J.A.T. A critical analysis of the conformable derivative. Nonlinear Dyn. 2019, 95, 3063–3073. [Google Scholar] [CrossRef]
- Abdelhakim, A.A. The flaw in the conformable calculus: It is conformable because it is not fractional. Fract. Calc. Appl. Anal. 2019, 22, 242–254. [Google Scholar] [CrossRef]
- Sadek, L.; Lazar, T.A.; Hashim, I. Conformable finite element method for conformable fractional partial differential equations. AIMS Math. 2023, 8, 28858–28877. [Google Scholar] [CrossRef]
- Clemence-Mkhope, D.P.; Clemence-Mkhope, B.G. The limited validity of the conformable Euler finite difference method and an alternate definition of the conformable fractional derivative to justify modification of the method. Math. Comput. Appl. 2021, 26, 66. [Google Scholar] [CrossRef]
- Yousif, M.A.; Hamasalh, F.K. Conformable non-polynomial spline method: A robust and accurate numerical technique. Ain Shams Eng. J. 2024, 15, 102415. [Google Scholar] [CrossRef]
- Yousif, M.A.; Hamasalh, F.K. A hybrid non-polynomial spline method and conformable fractional continuity equation. Mathematics 2023, 11, 3799. [Google Scholar] [CrossRef]
- Yousif, M.A.; Hamasalh, F.K.; Zeeshan, A.; Abdelwahed, M. Efficient simulation of Time-Fractional Korteweg-de Vries equation via conformable-Caputo non-polynomial spline method. PLoS ONE 2024, 19, e0303760. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C.; Ran, M. A linear finite difference scheme for generalized time fractional Burgers’ equation. Appl. Math. Model. 2016, 40, 6069–6081. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Applications of Legendre spectral collocation method for solving system of time delay differential equations. Adv. Mech. Eng. 2020, 12, 1687814020922113. [Google Scholar] [CrossRef]
- Karjanto, N. Properties of Chebyshev Polynomials. Publ. Sci. l’AEIF 2002, 2, 127–132. [Google Scholar]
- Khater, A.; Temsah, R. Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods. Comput. Math. Appl. 2008, 56, 1465–1472. [Google Scholar] [CrossRef]
- Khader, M.; Saad, K. A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method. Chaos Solitons Fractals 2018, 110, 169–177. [Google Scholar] [CrossRef]
- Yüzbaşı, Ş. Numerical solution of the Bagley–Torvik equation by the Bessel collocation method. Math. Methods Appl. Sci. 2013, 36, 300–312. [Google Scholar] [CrossRef]
- Arora, S.; Dhaliwal, S.S.; Kukreja, V.K. Solution of two point boundary value problems using orthogonal collocation on finite elements. Appl. Math. Comput. 2005, 171, 358–370. [Google Scholar] [CrossRef]
- Arora, S.; Dhaliwal, S.S.; Kukreja, V.K. Simulation of washing of packed bed of porous particles by orthogonal collocation on finite elements. Comput. Chem. Eng. 2006, 30, 1054–1060. [Google Scholar] [CrossRef]
- Arora, S.; Jain, R.; Kukreja, V. Solution of Benjamin-Bona-Mahony-Burgers’ equation using collocation method with quintic Hermite splines. Appl. Numer. Math. 2020, 154, 1–16. [Google Scholar] [CrossRef]
- Kutluay, S.; Yağmurlu, M.; Karakaş, A.S. A Robust Quintic Hermite Collocation Method for One-Dimensional Heat Conduction Equation. J. Math. Sci. Model. 2024, 7, 82–89. [Google Scholar] [CrossRef]
- Kadalbajoo, M.K.; Gupta, V. Numerical solution of singularly perturbed convection–diffusion problem using parameter uniform B-spline collocation method. J. Math. Appl. 2009, 355, 439–452. [Google Scholar] [CrossRef]
- Kadalbajoo, M.K.; Tripathi, L.P.; Arora, P. A robust non-uniform B-spline collocation method for solving the generalized Black–Scholes equation. IMA J. Numer. Anal. 2014, 34, 252–278. [Google Scholar] [CrossRef]
- Yağmurlu, N.M.; Karakaş, A.S. A novel perspective for simulations of the MEW equation by trigonometric cubic B-spline collocation method based on Rubin-Graves type linearization. Comput. Methods Differ. Equ. 2022, 10, 1046–1058. [Google Scholar]
- Yağmurlu, N.M.; Karakaş, A.S. Numerical solutions of the equal width equation by trigonometric cubic B-spline collocation method based on Rubin–Graves type linearization. Numer. Methods Partial. Differ. Equ. 2020, 36, 1170–1183. [Google Scholar] [CrossRef]
- Kutluay, S.; Yağmurlu, N.M.; Karakaş, A.S. An effective numerical approach based on cubic Hermite B-spline collocation method for solving the 1D heat conduction equation. New Trends Math. Sci. 2022, 10, 20–31. [Google Scholar] [CrossRef]
- Kutluay, S.; Yağmurlu, N.M.; Karakaş, A.S. A novel perspective for simulations of the Modified Equal-Width Wave equation by cubic Hermite B-spline collocation method. Wave Motion 2024, 129, 103342. [Google Scholar] [CrossRef]
- Hepson, O.E.; Korkmaz, A.; Dag, I. Exponential B-spline collocation solutions to the Gardner equation. Int. Comput. Math. 2020, 97, 837–850. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, Y.; Yuan, Z.; Wang, J.; Yang, Z. An exponential B-spline collocation method for the fractional sub-diffusion equation. Adv. Differ. Equ. 2017, 2017, 285. [Google Scholar] [CrossRef]
- Khattak, A.J. A computational meshless method for the generalized Burger’s–Huxley equation. Appl. Math. Model. 2009, 33, 3718–3729. [Google Scholar] [CrossRef]
- Bialecki, B.; Fernandes, R.I. An alternating-direction implicit orthogonal spline collocation scheme for non-linear parabolic problems on rectangular polygons. SIAM J. Sci. 2006, 28, 1054–1077. [Google Scholar] [CrossRef]
- Villadsen, J.; Stewart, W.E. Solution of boundary-value problems by orthogonal collocation. Chem. Eng. 1995, 50, 3981–3996. [Google Scholar] [CrossRef]
- Sneddon, I.N. Special Functions of Mathematical Physics and Chemistry; Longman Mathematical Texts: London, UK, 1980. [Google Scholar]
- Mazure, M.L. On the Hermite interpolation. Comptes Rendus Math. 2005, 340, 177–180. [Google Scholar] [CrossRef]
- Kumar, D.; Kadalbajoo, M.K. A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations. Appl. Math. Model. 2011, 35, 2805–2819. [Google Scholar] [CrossRef]
- Hall, C. On error bounds for spline interpolation. J. Approx. Theory 1968, 1, 209–218. [Google Scholar] [CrossRef]
- Prenter, P.M. Splines and Variational Methods; Wiley Interscience Publication: New York, NY, USA, 1975. [Google Scholar]
- Cole, J.D. On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 1951, 9, 225–236. [Google Scholar] [CrossRef]
- Jiwari, R. A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation. Comput. Phys. Commun. 2012, 183, 2413–2423. [Google Scholar] [CrossRef]
- Ganaie, I.A.; Kukreja, V.K. Numerical solution of Burgers’ equation by cubic Hermite collocation method. Appl. Math. Comput. 2014, 237, 571–581. [Google Scholar] [CrossRef]
i | |||
---|---|---|---|
1 | 12 | ||
2 | |||
3 | |||
4 |
Proposed Scheme | HWQA | CHCM | Exact | Proposed Scheme | HWQA | CHCM | Exact | ||
---|---|---|---|---|---|---|---|---|---|
0.25 | 1 | 0.1889046 | 0.18886 | 0.18887 | 0.1889040 | 0.1887889 | 0.18874 | 0.18875 | 0.1887881 |
5 | 0.0469723 | 0.04696 | 0.04695 | 0.0469723 | 0.0469635 | 0.04695 | 0.04696 | 0.0469635 | |
10 | 0.0242194 | 0.02421 | 0.02419 | 0.0242194 | 0.0242169 | 0.02421 | 0.0242 | 0.0242168 | |
15 | 0.0163154 | 0.01631 | 0.01630 | 0.0163154 | 0.0163076 | 0.01631 | 0.01631 | 0.0163076 | |
0.5 | 1 | 0.3759728 | 0.37591 | 0.37594 | 0.3759762 | 0.3757202 | 0.37565 | 0.37569 | 0.3757228 |
5 | 0.0939379 | 0.09393 | 0.09393 | 0.0939378 | 0.0939202 | 0.09391 | 0.09393 | 0.0939201 | |
10 | 0.0484372 | 0.04843 | 0.04843 | 0.0484372 | 0.0484214 | 0.04842 | 0.04841 | 0.0484214 | |
15 | 0.0325946 | 0.03259 | 0.03259 | 0.0325946 | 0.0324388 | 0.03244 | 0.03244 | 0.0324388 | |
0.75 | 1 | 0.5588145 | 0.55875 | 0.5588 | 0.5588341 | 0.5583661 | 0.55831 | 0.55836 | 0.5583839 |
5 | 0.1408869 | 0.14088 | 0.14089 | 0.1408869 | 0.1408317 | 0.14083 | 0.14083 | 0.1408316 | |
10 | 0.0722025 | 0.07221 | 0.0721 | 0.0722025 | 0.0711341 | 0.07114 | 0.07112 | 0.0711338 | |
15 | 0.0467756 | 0.04679 | 0.04678 | 0.0467753 | 0.0441337 | 0.04415 | 0.04414 | 0.0441329 |
0.02 | 4.6075 × | 7.7772 × | 7.0280 × | 9.9316 × | 7.0666 × | 9.9927 × |
0.04 | 3.7910 × | 6.4728 × | 6.9818 × | 9.9156 × | 7.0637 × | 9.9885 × |
0.06 | 3.3787 × | 5.7833 × | 6.6847 × | 9.9051 × | 7.0612 × | 9.9849 × |
0.08 | 3.1140 × | 5.3386 × | 6.3145 × | 9.8806 × | 7.0586 × | 9.9818 × |
0.1 | 2.9237 × | 5.0164 × | 5.9735 × | 9.6527 × | 7.0558 × | 9.9790 × |
0.02 | 4.5174 × | 7.4829 × | 6.9401 × | 9.8293 × | 7.0451 × | 9.9626 × |
0.04 | 3.7053 × | 6.1833 × | 6.8152 × | 9.7634 × | 7.0263 × | 9.9374 × |
0.06 | 3.2946 × | 5.5012 × | 6.5436 × | 9.7127 × | 7.0084 × | 9.9154 × |
0.08 | 3.0309 × | 5.0598 × | 6.1923 × | 9.6244 × | 6.9902 × | 9.8950 × |
0.1 | 2.8412 × | 4.7384 × | 5.8606 × | 9.3623 × | 6.9705 × | 9.8761 × |
Exact | ||||
---|---|---|---|---|
0.2 | 0.1512765 | 0.1512136 | 0.1512080 | 0.1512074 |
0.4 | 0.3014956 | 0.3014908 | 0.3014981 | 0.3014990 |
0.6 | 0.4493716 | 0.4497232 | 0.4497877 | 0.4497952 |
0.8 | 0.5930046 | 0.5943589 | 0.5945706 | 0.5947340 |
1 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
0.1 | 0.051050 | 0.110252 | 0.180629 | 0.051047 | 0.110236 | 0.180601 |
0.2 | 0.102076 | 0.22001 | 0.357714 | 0.10207 | 0.219979 | 0.357656 |
0.3 | 0.153054 | 0.328748 | 0.527307 | 0.153045 | 0.328700 | 0.527216 |
0.4 | 0.203958 | 0.435861 | 0.684527 | 0.903245 | 0.435792 | 0.684394 |
0.5 | 0.254759 | 0.540607 | 0.822682 | 0.254792 | 0.540514 | 0.822495 |
0.6 | 0.305428 | 0.642014 | 0.931559 | 0.305407 | 0.64189 | 0.931292 |
0.7 | 0.35593 | 0.738706 | 0.993458 | 0.355905 | 0.738539 | 0.993063 |
0.8 | 0.406226 | 0.828559 | 0.971871 | 0.406195 | 0.828328 | 0.971227 |
0.9 | 0.456268 | 0.907874 | 0.766651 | 0.456232 | 0.907535 | 0.765397 |
0.1 | 0.0510075 | 0.1100448 | 0.1802532 | 0.1019247 | 0.1098897 | 0.1799736 |
0.2 | 0.1019903 | 0.2195870 | 0.3569364 | 0.1019247 | 0.2192694 | 0.3563581 |
0.3 | 0.1529229 | 0.3280877 | 0.5260710 | 0.1528229 | 0.3275913 | 0.5251514 |
0.4 | 0.2037786 | 0.4349270 | 0.6827295 | 0.2036421 | 0.4342244 | 0.6813914 |
0.5 | 0.2545286 | 0.5393417 | 0.8201426 | 0.2543528 | 0.5383881 | 0.8182503 |
0.6 | 0.3051411 | 0.6403229 | 0.9279448 | 0.3049219 | 0.6390448 | 0.9252489 |
0.7 | 0.3555800 | 0.7364290 | 0.9880943 | 0.3553120 | 0.7346995 | 0.9840868 |
0.8 | 0.4058036 | 0.8253964 | 0.9631312 | 0.4054797 | 0.8229734 | 0.9565905 |
0.9 | 0.4557622 | 0.9031732 | 0.7497448 | 0.4553306 | 0.8995028 | 0.7373023 |
Absolute Error [4] | Absolute Error Proposed Scheme | Absolute Error [35] | Absolute Error Proposed Scheme | ||
---|---|---|---|---|---|
0.5 | 0.2 | 6.2000 × | 5.9074 × | 2.1848 × | 6.3393 × |
0.4 | 1.2500 × | 1.1417 × | 4.3696 × | 1.2620 × | |
0.6 | 1.8700 × | 1.6103 × | 6.5544 × | 1.8769 × | |
0.8 | 2.4900 × | 1.9490 × | 8.7392 × | 2.4685 × | |
1.0 | 3.1300 × | 0.000000 | 1.0924 × | 0.000000 | |
1 | 0.2 | 7.9000 × | 1.7931 × | 3.1043 × | 4.5495 × |
0.4 | 1.6100 × | 3.4205 × | 6.2086 × | 9.0263 × | |
0.6 | 2.4200 × | 4.7158 × | 9.3129 × | 1.3357 × | |
0.8 | 3.2300 × | 5.5109 × | 1.2417 × | 1.7467 × | |
1.0 | 4.0300 × | 0.000000 | 1.5522 × | 0.000000 |
[35] | Proposed Scheme | [35] | Proposed Scheme | ||
---|---|---|---|---|---|
0.5 | 0.2 | 0.030474 | 0.032724 | 0.031882 | 0.032875 |
0.4 | 0.060948 | 0.065537 | 0.063764 | 0.065800 | |
0.6 | 0.091422 | 0.098521 | 0.095647 | 0.098818 | |
0.8 | 0.121896 | 0.131748 | 0.127529 | 0.131966 | |
1.0 | 0.152370 | 0.165243 | 0.159411 | 0.165242 | |
1 | 0.2 | 0.024792 | 0.027690 | 0.026246 | 0.027709 |
0.4 | 0.049583 | 0.055393 | 0.052492 | 0.055424 | |
0.6 | 0.074375 | 0.083118 | 0.078738 | 0.083151 | |
0.8 | 0.099167 | 0.110870 | 0.104984 | 0.110890 | |
1.0 | 0.123958 | 0.138619 | 0.131230 | 0.138619 |
0.05 | 6.8261 × | 1.7816 × | 3.4998 × | 9.0431 × | 1.8126 × | 4.5554 × |
0.25 | 5.2863 × | 8.9567 × | 2.7589 × | 4.5094 × | 1.4859 × | 2.2624 × |
0.5 | 2.7049 × | 4.1801 × | 1.4273 × | 2.1029 × | 7.8402 × | 1.0762 × |
1 | 7.5265 × | 1.1209 × | 4.0807 × | 5.6794 × | 2.3471 × | 3.1060 × |
4 | 3.2095 × | 4.2808 × | 2.6716 × | 3.6273 × | 2.4075 × | 3.3091 × |
0.05 | 4.7338 × | 9.0699 × | 4.7820 × | 9.0699 × | 4.9665 × | 9.0699 × |
0.25 | 3.4455 × | 6.3773 × | 3.4885 × | 6.3773 × | 3.5592 × | 6.3773 × |
0.5 | 2.4184 × | 4.3527 × | 2.4425 × | 4.3527 × | 2.4751 × | 4.3527 × |
1 | 1.2991 × | 2.2540 × | 1.3013 × | 2.2540 × | 1.3038 × | 2.2540 × |
4 | 6.0887 × | 9.2425 × | 5.7361 × | 9.2425 × | 5.5071 × | 9.2425 × |
0.1 | 9.9950 × | 9.9900 × | 9.9800 × | 9.5189 × | 9.0709 × | 8.2629 × | 6.3822 × | 4.3556 × | 2.2549 × |
0.2 | 1.9990 × | 1.9980 × | 1.9960 × | 1.9038 × | 1.8142 × | 1.6526 × | 1.2764 × | 8.7112 × | 4.5098 × |
0.3 | 2.9985 × | 2.9970 × | 2.9940 × | 2.8557 × | 2.7213 × | 2.4789 × | 1.9147 × | 1.3067 × | 6.7646 × |
0.4 | 3.9980 × | 3.9960 × | 3.9920 × | 3.8076 × | 3.6283 × | 3.3052 × | 2.5529 × | 1.7422 × | 9.0194 × |
0.5 | 4.9975 × | 4.9950 × | 4.9900 × | 4.7595 × | 4.5354 × | 4.1315 × | 3.1911 × | 2.1777 × | 1.1274 × |
0.6 | 5.9970 × | 5.9940 × | 5.9880 × | 5.7114 × | 5.4425 × | 4.9577 × | 3.8294 × | 2.6132 × | 1.3529 × |
0.7 | 6.9965 × | 6.9930 × | 6.9860 × | 6.6633 × | 6.3496 × | 5.7840 × | 4.4676 × | 3.0487 × | 1.5783 × |
0.8 | 7.9960 × | 7.9920 × | 7.9840 × | 7.6153 × | 7.2567 × | 6.6103 × | 5.1057 × | 3.4841 × | 1.8037 × |
0.9 | 8.9955 × | 8.9910 × | 8.9820 × | 8.5672 × | 8.1638 × | 7.4366 × | 5.7438 × | 3.9195 × | 2.0292 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayebire, A.-M.; Pasrija, A.; Manshahia, M.S.; Arora, S. A Novel Hybrid Computational Technique to Study Conformable Burgers’ Equation. Math. Comput. Appl. 2024, 29, 114. https://doi.org/10.3390/mca29060114
Ayebire A-M, Pasrija A, Manshahia MS, Arora S. A Novel Hybrid Computational Technique to Study Conformable Burgers’ Equation. Mathematical and Computational Applications. 2024; 29(6):114. https://doi.org/10.3390/mca29060114
Chicago/Turabian StyleAyebire, Abdul-Majeed, Atul Pasrija, Mukhdeep Singh Manshahia, and Shelly Arora. 2024. "A Novel Hybrid Computational Technique to Study Conformable Burgers’ Equation" Mathematical and Computational Applications 29, no. 6: 114. https://doi.org/10.3390/mca29060114
APA StyleAyebire, A.-M., Pasrija, A., Manshahia, M. S., & Arora, S. (2024). A Novel Hybrid Computational Technique to Study Conformable Burgers’ Equation. Mathematical and Computational Applications, 29(6), 114. https://doi.org/10.3390/mca29060114