Compressive Sensing of Multichannel Electroencephalogram Signals Based on Nonlocal Low-Rank and Cosparse Priors
Abstract
:1. Introduction
2. Related Works
2.1. Sparse Synthesis Model and Cosparse Analysis Model
2.2. Cosparsity and Low-Rank Property Based Recovery
3. Nonlocal Low-Rank and Cosparse Priors for Multichannel EEG Signals
3.1. X Sub-Problem
3.2. A Sub-Problem
3.3. B Sub-Problem
Algorithm 1 Compressive sensing of multichannel EEG signals based on nonlocal low-rank and cosparse priors |
Input:, , , , ; while stopping criteria unsatisfied do (a) Compute X via Equation (12); (b) Compute A by computing Equation (14); (c) Compute B via Equation (15); (d) Update Lagragian multipliers: ; ; ; end while Output: final reconstructed signal ; |
4. Experimental Results
4.1. MSE and MCC Results on Test Data
4.2. Influence of Variable p and q on Recovery Results
4.3. Complexity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bachmann, C.; Ashouei, M.; Pop, V.; Vidojkovic, M.; Groot, H.D.; Gyselinckx, B. Low-power wireless sensor nodes for ubiquitous long-term biomedical signal monitoring. IEEE Commun. Mag. 2012, 50, 20–27. [Google Scholar] [CrossRef]
- Casson, A.J.; Yates, D.; Smith, S.; Duncan, J.S.; Rodriguez-Villegas, E. Wearable Electroencephalography. IEEE Eng. Med. Biol. Mag. 2010, 29, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Feng, L.; Sun, H. Compressive Sensing of Multichannel EEG Signals Based on Graph Fourier Transform and Cosparsity. Neural Process. Lett. 2020, 51, 1227–1236. [Google Scholar] [CrossRef]
- Subha, D.P.; Joseph, P.K.; Rajendra, A.U.; Lim, C.M. EEG signal analysis: A survey. J. Med. Syst. 2010, 34, 195–212. [Google Scholar] [CrossRef]
- Hosseini Kamal, M.; Shoaran, M.; Leblebici, Y.; Schmid, A. Compressive multichannel cortical signal recording. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 4305–4309. [Google Scholar]
- Abdulghani, A.M.; Casson, A.J.; Rodriguez-Villegas, E. Compressive sensing scalp EEG signals: Implementations and practical performance. Med. Biol. Eng. Comput. 2012, 50, 1137–1145. [Google Scholar] [CrossRef]
- Zhang, Z.; Jung, T.P.; Makeig, S.; Rao, B.D. Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware. IEEE Trans. Biomed. Eng. 2013, 60, 221–224. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Nam, S.; Davies, M.E.; Elad, M.; Gribonval, R. The cosparse analysis model and algorithms. Appl. Comput. Harmon. Anal. 2011, 34, 30–56. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2008, 53, 4655–4666. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]
- Wormann, J.; Hawe, S.; Kleinsteuber, M. Analysis Based Blind Compressive Sensing. IEEE Signal Process. Lett. 2013, 20, 491–494. [Google Scholar] [CrossRef]
- Cleju, N.; Jafari, M.G.; Plumbley, M.D. Analysis-based sparse reconstruction with synthesis-based solvers. In Proceedings of the ICASSP, Kyoto, Japan, 25–30 March 2012; pp. 5401–5404. [Google Scholar]
- Nam, S.; Davies, M.E.; Elad, M.; Gribonval, R. Cosparse Analysis Modeling—Uniqueness and Algorithms. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 22–27 May 2011; pp. 5804–5807. [Google Scholar]
- Liu, Y.; De, V.M.; Gligorijevic, I.; Matic, V.; Li, Y.; Van, H.S. Multi-structural signal recovery for biomedical compressive sensing. IEEE Trans. Biomed. Eng. 2013, 60, 2794–2805. [Google Scholar] [PubMed]
- Liu, Y.; De, V.M.; Van, H.S. Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization. IEEE Trans. Biomed. Eng. 2015, 62, 2055–2061. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Gogna, A.; Ward, R. A low-rank matrix recovery approach for energy efficient EEG acquisition for a wireless body area network. Sensors 2014, 14, 15729–15748. [Google Scholar] [CrossRef] [PubMed]
- Singh, W.; Shukla, A.; Deb, S.; Majumdar, A. Energy efficient acquisition and reconstruction of EEG signals. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; Volume 2014, pp. 1274–1277. [Google Scholar]
- Majumdar, A.; Shukla, A.; Ward, R. Combining sparsity with rank-deficiency for energy efficient EEG sensing and transmission over Wireless Body Area Network. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, South Brisbane, Australia, 19–24 April 2015. [Google Scholar]
- Li, T.; Wen, P.; Jayamaha, S. Anaesthetic EEG signal denoise using improved nonlocal mean methods. Australas. Phys. Eng. Sci. Med. 2014, 37, 431–437. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Feng, L.; Sun, H.; Sun, Q.; Xia, G. Compressive sensing via nonlocal low-rank tensor regularization. Neurocomputing 2016, 216, 45–60. [Google Scholar] [CrossRef]
- Rao, B.D.; Kreutz-Delgado, K. An affine scaling methodology for best basis selection. IEEE Trans. Signal Process. 1999, 47, 187–200. [Google Scholar] [CrossRef]
- Chartrand, R.; Yin, W. Iteratively reweighted algorithms for compressive sensing. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 3869–3872. [Google Scholar]
- Wang, J.; Wang, M.; Hu, X.; Yan, S. Visual Data Denoising with a Unified Schatten-p Norm and ℓq Norm Regularized Principle Component Pursuit. Pattern Recognit. 2015, 48, 3135–3144. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, D.; Hou, W.S.; Wu, X.Y.; Chen, L. Weighted Schatten p-norm minimization for impulse noise removal with TV regularization and its application to medical images. Biomed. Signal Process. Control 2021, 66, 102123. [Google Scholar] [CrossRef]
- Dong, W.; Shi, G.; Li, X.; Ma, Y.; Huang, F. Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process. 2014, 23, 3618–3632. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Sun, H.; Zhu, J. Robust image compressive sensing based on half-quadratic function and weighted Schatten-p norm. Inf. Sci. 2018, 477, 265–280. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, C.; Su, S.; Chang, Z. Compressive Sensing of Multichannel EEG Signals via Iq Norm and Schatten-p Norm Regularization. Math. Probl. Eng. 2016, 2016, 2189563. [Google Scholar] [CrossRef]
- Majumdar, A.; Ward, R.K. Energy efficient EEG sensing and transmission for wireless body area networks: A blind compressed sensing approach. Biomed. Signal Process. Control 2015, 20, 1–9. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank PhysioToolkit. PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Feng, L.; Mo, X. Robust Multichannel EEG Signal Reconstruction Method. Pattern Recognit. Lett. 2021, 151, 209–214. [Google Scholar] [CrossRef]
- Feng, L.; Sun, H.; Sun, Q.; Xia, G. Image Compressive Sensing via Truncated Schatten-p Norm Regularization. Signal Process. Image Commun. 2016, 47, 28–41. [Google Scholar] [CrossRef]
Value | Rate | |||||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | |
p | 0.2 | 0.2 | 0.2 | 0.1 | 0.5 | 0.4 | 0.5 | 0.5 |
q | 0.3 | 0.2 | 0.4 | 0.1 | 0.1 | 0.5 | 0.5 | 0.1 |
Value | Rate | |||||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | |
p | 0.3 | 0.1 | 0.1 | 0.5 | 0.1 | 0.2 | 0.4 | 0.1 |
q | 0.3 | 0.2 | 0.2 | 0.5 | 0.3 | 0.3 | 0.1 | 0.2 |
Method | Rate | |||||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | |
BSBL | 10.0 | 7.0 | 5.5 | 5.7 | 5.9 | 8.0 | 9.2 | 13.7 |
SCLR-I | 10.5 | 12.0 | 14.1 | 16.2 | 19.0 | 22.0 | 25.0 | 26.0 |
SCLR-A | 3.7 | 4.3 | 5.8 | 7.0 | 8.0 | 8.5 | 10.7 | 11.0 |
LQSP | 3.7 | 4.3 | 5.8 | 7.0 | 8.0 | 8.6 | 10.7 | 11.0 |
NLRC | 61.1 | 61.6 | 62.8 | 63.4 | 63.7 | 63.9 | 64.2 | 64.9 |
Method | Rate | |||||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | |
BSBL | 8.3 | 7.7 | 7.6 | 7.7 | 7.3 | 10.0 | 11.4 | 17.0 |
SCLR-I | 13.1 | 14.9 | 17.5 | 19.1 | 20.6 | 21.1 | 22.2 | 32.3 |
SCLR-A | 4.6 | 5.3 | 7.2 | 8.7 | 10.0 | 10.6 | 13.3 | 13.7 |
LQSP | 4.6 | 5.4 | 7.2 | 8.7 | 10.1 | 10.6 | 13.3 | 13.8 |
NLRC | 76.7 | 77.9 | 78.3 | 76.8 | 74.9 | 77.2 | 76.4 | 74.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Feng, L.; Wang, C. Compressive Sensing of Multichannel Electroencephalogram Signals Based on Nonlocal Low-Rank and Cosparse Priors. Math. Comput. Appl. 2024, 29, 115. https://doi.org/10.3390/mca29060115
Zhu J, Feng L, Wang C. Compressive Sensing of Multichannel Electroencephalogram Signals Based on Nonlocal Low-Rank and Cosparse Priors. Mathematical and Computational Applications. 2024; 29(6):115. https://doi.org/10.3390/mca29060115
Chicago/Turabian StyleZhu, Jun, Lei Feng, and Chunmeng Wang. 2024. "Compressive Sensing of Multichannel Electroencephalogram Signals Based on Nonlocal Low-Rank and Cosparse Priors" Mathematical and Computational Applications 29, no. 6: 115. https://doi.org/10.3390/mca29060115
APA StyleZhu, J., Feng, L., & Wang, C. (2024). Compressive Sensing of Multichannel Electroencephalogram Signals Based on Nonlocal Low-Rank and Cosparse Priors. Mathematical and Computational Applications, 29(6), 115. https://doi.org/10.3390/mca29060115