Application of Crustaceans as Ecological Markers for the Assessment of Pollution of Brackish Lakes of Bulgaria Based on Their Ability to Accumulate the Heavy Metals Cd, Zn and Ni
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Points
2.1.1. Atanasovsko Lake Maintained Reserve
2.1.2. “Poda” Protected Area
2.1.3. Pomorie Lake Protected Area
2.2. Sampling, Archiving and Storage of Samples
2.3. Sample Preservation and Analysis
2.4. Statistical Analyses
3. Results
3.1. Levels of Physicochemical Parameters pH, Electrical Conductivity (mS/cm−1) and Salinity (‰) of the Waters of the Atanasovsko Lake Maintained Reserve, Poda Protected Area and Pomorie Lake Protected Area during the Period May 2021–September 2021
3.2. Content of the Heavy Metals Cd, Zn and Ni in the Waters of the Studied Waterbodies of the Atanasovsko Lake Maintained Reserve, Poda Protected Area and Pomorie Lake Protected Area
3.3. Content of the Heavy Metals Cd, Zn and Ni in the Organism of Representatives of Crustaceans (Branchiopoda: Anostraca and Malacostraca: Amphipoda) Taken from the Atanasovsko Lake Maintained Reserve, Poda Protected Area and Pomorie Lake Protected Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Velcheva, I.; Bachvarov, G. Study of the content of lead (Pb), zinc (Zn) and cadmium (Cd) in the perch of Perca fluviatilis (Pisces, family Percidae) from the Kardzhali Aam. Arda River. Sci. Pap. PU Biol. Anim. 1994, 30, 47–52. [Google Scholar]
- Ionescu, P.; Radu, V.; György, D.; Ivanov, A.; Diacu, E. Lower Danube Water Quality Assessment Using Heavy Metals Indexes. Rev. Chim. 2015, 66, 1088–1092. [Google Scholar]
- Ashraj, W. Accumulation of heavy metals in kidney and heart tissues of Epinephelus microdon fish from the Arabian. Gulf. Environ. Monit. Assess 2005, 101, 311–316. [Google Scholar] [CrossRef]
- Farombi, E.; Adelowo, O.; Ajimoko, Y. Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African Cat fish (Clarias gariepinus) from Nigeria ogun river. Int. J. Environ. Res. Public Health 2007, 4, 158–165. [Google Scholar] [CrossRef]
- Vosyliene, M.; Jankaite, A. Effect of heavy metal model mixture on rainbow trout biological parameters. Ekologija 2006, 4, 12–17. [Google Scholar]
- Frederickson, C.; Bush, A. Synaptically released zinc: Physiological functions and pathological effects. Biometals 2001, 14, 353–366. [Google Scholar] [CrossRef]
- Valkova, E.; Atanasov, V.; Vlaykova, T.; Tacheva, T.; Zhelyazkova, Y.; Dimov, D.; Yakimov, K. The relationship between the content of heavy metals Pb and Zn in some components of the environment, fishes as food and human health. Bulg. J. Agric. Sci. 2021, 27, 954–962. [Google Scholar]
- Gabrielak, T.; Akahori, A.; Przybylska, M.; Jyzwiak, Z.; Bichon, G. Carp erythrocyte lipids as a potential target for the toxic action of zink ions. Toxicol. Lett. 2002, 132, 57–64. [Google Scholar]
- Hotz, C.; Lowe, N.; Araya, M.; Brown, K. Assessment of the Trace Element Status of Individuals and Populations: The Example of Zinc and Copper. Nutr. J. 2003, 133, 1563S–1568S. [Google Scholar] [CrossRef]
- Rainbow, P. Ecophysiology of Trace Metal Uptake in Crustaceans. Estuar. Coast. Shelf Sci. 1997, 44, 169–176. [Google Scholar] [CrossRef]
- Willmer, P.; Stone, G.; Johnston, I. Environmental Physiology of Animals; Wiley-Blackwell: Hoboken, NJ, USA, 2009; p. 763. [Google Scholar]
- Mebane, C.; Schmidt, T.; Miller, J.; Balistreri, L. Bioaccumulation and Toxicity of Cadmium, Copper, Nickel, and Zinc and Their Mixtures to Aquatic Insect Communities. Environ. Toxicol. Chem. 2020, 39, 812–833. [Google Scholar] [CrossRef]
- Spurný, P.; Mareš, J.; Hedbavný, J.; Sukop, I. Heavy metal distribution in the ecosystems of the upper course of the Jihlava River. Czech J. Anim. Sci. 2002, 47, 160–167. [Google Scholar]
- Yilmaz, F. Bioaccumulation of heavy metals in water, sediment, aquatic plants and tissues of Cyprinus carpio from Kizilirmak, Turkey. Fresenius Environ. Bull. 2006, 15, 360–369. [Google Scholar]
- Andreji, J.; Stranai, I.; Massanyi, P.; Valent, M. Accumulation of some metals in muscles of five species from lower Nitra River. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2006, 41, 2607–2622. [Google Scholar] [CrossRef]
- Handy, R. The assessment of episodic metal pollution. II. The effects of cadmium and copper enriched diets on tissue contaminant analysis in Rainbow Trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol. 1992, 22, 82–87. [Google Scholar] [CrossRef]
- Stewart, A. Accumulation of Cd by a freshwater mussel (Pyganodon grandis) is reduced in the presence of Cu, Zn, Pb, and Ni. Can. J. Fish. Aquat. Sci. 1999, 56, 467–478. [Google Scholar] [CrossRef]
- Jezierska, B.; Witeska, M. The metal uptake and accumulation in fish living in polluted waters. In Soil and Water Pollution Monitoring, Protection and Remediation, 3–23; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1007–1014. [Google Scholar]
- Cervera, A.; Maymó, A.; Sendra, M.; Martínez-Pardo, R. Garcerá Effects of cadmium on development and reproduction Oncopeltus fasciatus (Heteroptera: Lygaeidae). J. Insect Physiol. 2004, 50, 737–749. [Google Scholar] [CrossRef]
- Kim, S.; Cho, M.; Kim, S. Cadmium-induced non-apoptotic cell death mediated by oxidative stress under the condition of sulfhydryl deficiency. Toxicol. Lett. 2003, 144, 325–336. [Google Scholar] [CrossRef]
- Tandon, S.; Singh, S.; Prasad, S.; Khandekar, K.; Dwivedi, V.; Chatterjee, M.; Mathur, N. Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat. Toxicol. Lett. 2003, 145, 211–217. [Google Scholar] [CrossRef]
- Popova, M. Influence of Cd Cl2 on liver subcellular structures of newborn and sexually mature rats. Ecol. Future 2004, 3, 50–56. [Google Scholar]
- Satarug, S.; Baker, J.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P.; Williams, P.; Williams, D.J.; Moore, M.R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 2003, 137, 65–83. [Google Scholar] [CrossRef]
- Barceloux, D. Nickel. Clin. Toxicol. 1999, 37, 239–258. [Google Scholar] [CrossRef]
- Phipps, T.; Tank, S.; Wirtz, J.; Brewer, L.; Coyner, A.; Ortego, L.; Fairbrother, A. Essentiality of nickel and homeostatic mechanisms for its regulation in terrestrial organisms. Environ. Rev. 2002, 10, 209–261. [Google Scholar] [CrossRef]
- Atchison, G.; Henry, M.; Sanherinrich, M. Effects of metals on fish behavior. Environ. Biol. Fish 1987, 18, 11–25. [Google Scholar] [CrossRef]
- Wong, C.; Chu, K.; Tang, K.; Tam, T.; Wong, L. Effects of chromium, copper and nickel on survival and feeding behaviour of Metapenaeus ensis larvae and postlarvae (Decapoda: Penaeidae). Mar. Environ. Res. 1993, 36, 63–78. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Nickel; Final Report; NTIS Accession No. PB98-101199; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 1997; p. 293. [Google Scholar]
- Wong, C.; Wong, P.; Tao, H. Toxicity of nickel and nickel electroplating water to the fresh water cladoceran Mona macrocopa. Bull. Environ. Contam Toxicol. 1991, 47, 448–454. [Google Scholar] [CrossRef]
- Pane, E.; Richards, J.; Wood, C. Acute waterborne nickel toxicity in the rainbow trout (Oncorhynchus mykiss) occurs by a respiratory rather than ionoregulatory mechanism. Aquat. Toxicol. 2003, 63, 65–82. [Google Scholar] [CrossRef]
- Pane, E.; Smith, C.; Mc Geer, J.; Wood, C. Mechanisms of acute and chronic waterborne nickel toxicity in the freshwater cladoceran, Daphnia magna. Environ. Sci. Technol. 2003, 37, 4382–4389. [Google Scholar] [CrossRef]
- Pane, E.; Haque, A.; Goss, G.; Wood, S. The physiological consequences of exposure to chronic, sublethal waterborne nickel in rainbow trout (Oncorhynchus mykiss): Exercise vs resting physiology. J. Exp. Biol. 2004, 207, 1249–1261. [Google Scholar] [CrossRef]
- Pane, E.; Haque, A.; Wood, C. Mechanistic analysis of acute, Ni-induced respiratory toxicity in the rainbow trout (Oncorhynchus mykiss): An exclusively branchial phenomenon. Aquat. Toxicol. 2004, 69, 11–24. [Google Scholar] [CrossRef]
- Pane, E.; Bucking, C.; Patel, M.; Wood, C. Renal function in the freshwater rainbow trout (Oncorhynchus mykiss) following acute and prolonged exposure to waterborne nickel. Aquat. Toxicol. 2005, 72, 119–133. [Google Scholar] [CrossRef]
- Brix, K.; Keithly, J.; DeForest, D.; Laughlin, J. Acute and chronic toxicity of nickel to rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem. 2004, 23, 2221–2228. [Google Scholar] [CrossRef]
- Sreedevi, P.; Sivarmakrishna, B.; Suresh, A.; Radhakrishnaiah, K. Effect of nickel on some aspects of protein metabolism in the gill and kidney of the fresh water fi sh Cyprinus carpio. Environ. Poll. 1992, 70, 59–63. [Google Scholar] [CrossRef]
- Martinez-Tabche, L.; Mora, B.; Olivan, L.; Faz, C.; Grajeda, Y.; Ortega, A. Toxic effect of nickel on hemoglobin concentration of Limnodrilus hoffmeisteri in spiked sediments of trout farms. Ecotoxicol. Environ. Saf. 1999, 42, 143–149. [Google Scholar] [CrossRef]
- Rathore, R.; Khangarot, B. Effects of temperature on the sensitivity of sludge worm Tubifex tubifex Muller to selected heavy metals. Ecotoxicol. Environ. Saf. 2002, 53, 27–36. [Google Scholar] [CrossRef]
- O’neill, S.; Valdeolmillos, M.; Eisner, D. The effects of nickel on contraction on membrane current in isolated rat myocytes. Q. J. Exp. Physiol. 1988, 73, 1017–1020. [Google Scholar] [CrossRef]
- Rainbow, S.; Dallindger, R. (Eds.) Ecotoxicology of Metals in Invertebrates; Lewis Publishers: Boca Raton, FL, USA, 1993; p. 480. [Google Scholar]
- Bridges, C.; Zalups, R. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 2005, 204, 274–308. [Google Scholar] [CrossRef]
- Pane, E.; Patel, M.; Wood, C. Chronic, sublethal nickel acclimation alters the diffusive properties of renal brush border membrane vesicles (BBMVS) prepared from the freshwater rainbow trout. Comp. Biochem. Physiol. 2006, 143, 78–85. [Google Scholar] [CrossRef]
- Eisler, R. Nickel Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review, United States Geological Survey, Biological Resources Division, Biological Sciences Report 1998–0001; Patuxent Wildlife Research Center, United States Geological Survey: Laurel, MD, USA, 1998; Volume 95. [Google Scholar]
- Ravera, O. Influence of heavy metals on the reproduction and embryonic development of freshwater pulmonates (Gastropoda; Mollusca) and cladocerans (Crustacea: Arthropoda). Comp. Biochem. Physiol. 1991, 100, 215–219. [Google Scholar] [CrossRef]
- Hunt, J.; Andrson, B.; Phillips, B.; Tjeerdema, R.; Puskett, H.; Stephenson, M.; Tucker, M.; Watson, D. Acute and chronic toxicity of nickel to marine organisms: Implications for water quality criteria. Environ. Toxicol. Chem. 2002, 21, 2423–2430. [Google Scholar] [CrossRef]
- Mohamed, S.; Gad, S. Distribution of some heavy metals in tissues of Oreochromis niloticus, Tilapia zillii and Clarias lazera from Abu Za’Baal Lakes and their impacts on some biochemical parameters and on the histological structures of some organs. Egipt. J. Aquat. Biol. Fish. 2005, 9, 41–80. [Google Scholar] [CrossRef]
- Pöckl, M.; Holdich, D.; Pennerstorfer, J. Identifying Native and Alien Crayfish Species in Europe; Craynet: Poitiers, France, 2006; p. 47. [Google Scholar]
- Kouba, A.; Buřič, M.; Kozák, P. Bioaccumulation and Effects of Heavy Metals in Crayfish: A Review. Water Air Soil Pollut. 2010, 211, 5–16. [Google Scholar] [CrossRef]
- Belk, D. “Branchiopoda”. In Sol Felty Light. In The Light and Smith Manual: Intertidal Invertebrates from Central California to Oregon, 4th ed.; Carlton, J.T., Ed.; University of California Press: Oakland, CA, USA, 2007; pp. 414–417. ISBN 978-0-520-23939-5. [Google Scholar]
- Khanna, D. “Segmentation in arthropods”. In Biology of Arthropoda; Discovery Publishing House: New Delhi, India, 2004; pp. 316–394. ISBN 978-81-7141-897-8. [Google Scholar]
- Available online: https://www.burgasmuseums.bg/bg/encdetail/rezervat-atanasovsko-ezero-1 (accessed on 22 March 2022).
- Available online: https://bg.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B4%D0%B0_(%D0%91%D1%83%D1%80%D0%B3%D0%B0%D1%81) (accessed on 12 May 2023).
- Available online: https://bg.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BC%D0%BE%D1%80%D0%B8%D0%B9%D1%81%D0%BA%D0%BE_%D0%B5%D0%B7%D0%B5%D1%80%D0%BE (accessed on 13 September 2022).
- Available online: https://bds-bg.org/bg/project/show/bds:proj:109919 (accessed on 20 March 2023).
- Available online: https://bds-bg.org/bg/project/show/bds:proj:114651 (accessed on 21 January 2022).
- Grintsov, V.; Sezgin, M. Manual for Identification of Amphipoda from the Black Sea; Digit Print: Sevastopol, Ukraine, 2011; p. 151. [Google Scholar]
- Timms, B. An identification guide to the brine shrimps (Crustacea: Anostraca: Artemiina) of Australia. Mus. Vic. Sci. Rep. 2012, 16, 1–36. [Google Scholar] [CrossRef]
- Available online: https://bds-bg.org/bg/project/show/bds:proj:105462 (accessed on 26 April 2023).
- Available online: https://www.en-standard.eu/din-iso-11047-soil-quality-determination-of-cadmium-chromium-cobalt-copper-lead-manganese-nickel-and-zinc-in-aqua-regia-extracts-of-soil-flame-and-electrothermal-atomic-absorption-spectrometric-methods-iso-11047-1998/ (accessed on 15 June 2022).
- Regulation №H4 of 14 September 2012 of the Bulgarian Legislation for the Characterization of Surface Waters, Promulgated: SG, iss. 22. pp. 9–22. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC200707/ (accessed on 20 February 2022).
- Regulation on Environmental Quality Standards for Priority Substances and Some Other Pollutants, Adopted by PMS No. 256 of 1.11.2010, Promulgated, SG No. 88 of 9.11.2010, in Force since 9.11.2010, Amendment, Number 88 of 8.10.2013, in Force from 8.10.2013, Amendment and Addition, No. 97 of 11.12.2015, in Force since 11.12.2015. Available online: https://eea.government.bg/bg/legislation/water/naredbastandartizaka4estvo_17.pdf (accessed on 21 February 2023).
- Regulation 5 of 9.02.2015 of the Bulgarian Legislation for Determining the Maximum Permissible Amounts of Certain Contaminants in Food, Issued by the Minister of Health, Promulgated, SG, Iss.14 of 20.02.2015 in Force since 20.02.2015. Available online: https://faolex.fao.org/docs/pdf/bul180898.pdf (accessed on 22 March 2020).
- Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. Union 2006, L364, 5.
- Management Plan for the Maintenance Reserve “Atanasovsko Ezero”, Bulgarian-Swiss Program for the Protection of Biological Diversity, Sofia; Ministry of the Environment and Water: Sofia, Bulgaria; Union for the Protection of Birds—Switzerland: Lucerne, Switzerland; Volumes 7–8, p. 65.
- Annual Report on the Nature Protection Status of Habitat 1150 Coastal Lagoons in BG0000270 Atanasovsko Lake, Spas Uzunov, Georgi Gyuzelev, BURGAS. 2021. Available online: https://lagoon.biodiversity.bg/files/modules/261/annual-report-1150-2021-final-1668.pdf (accessed on 21 February 2023).
- Rabadjieva, D.; Kovacheva, A.; Tepavitcharova, S.; Gyuzelev, G.; Kornilev, Y.V.; Vasilev, V. Modeling of Chemical Species and Precipitation Processes in Waters of the Protected Site Poda, Burgas, Bulgaria. J. Int. Sci. Publ. Ecol. Saf. 2018, 12, 96–108. [Google Scholar]
- Abolhasani, J.; Behbahani, M. Application of 1-(2-pyridylazo)-2-naphthol-modified nanoporous silica as a technique in simultaneous trace monitoring and removal of toxic heavy metals in food and water samples. Environ. Monit. Assess. 2015, 187, 4176. [Google Scholar] [CrossRef] [PubMed]
- Hibaum, G. Hydrochemistry of Pomoriisko lake. In Reports on the Integrated Management Plan of Pomorie Lake Protected Area BG0000152 and Pomorie Protected Area BG0000620; Green Balkans: Plovdiv, Bulgaria, 2010; Volume 30. Available online: https://www.moew.government.bg/ (accessed on 22 March 2023). (In Bulgarian)
- Regional Environment and Water Inspection—Burgas, Project for Update of the Management Plan of the Atanasovsko Lake Managed Reserve. 2015, Volume 133. Available online: https://www.strategy.bg (accessed on 4 April 2022).
- Valkova, E.; Atanasov, V.; Velichkova, K.; Kostadinova, G.; Mihaylova, G. Content of Pb in water, sediment, aquatic plants and musculature of common carp (Cyprinus carpio L.) from different water bodies in Stara Zagora region, Bulgaria. Bulg. J. Agric. Sci. 2016, 22, 566–572. [Google Scholar]
- Rabadjieva, D.; Gergulova, R.; Kovacheva, A.; Tepavitcharova, S.; Ilieva, R. Chemical Species of Zn, Cd, and Pb in Waters of Pomorie Lake, Bulgaria Modeling and Predictions. J. Int. Sci. Publ. Ecol. Saf. 2020, 14, 14–21. [Google Scholar]
- Valkova, E.; Atanasov, V.; Vlaykova, T.; Tacheva, T.; Zhelyazkova, Y.; Dimov, D.; Yakimov, K. The relationship between the content of heavy metals Cd and Cu in some components of the environment, fish as food and human health. Bulg. J. Agric. Sci. 2021, 27, 963–971. [Google Scholar]
- Valkova, E.; Atanasov, V.; Tzanova, M.; Atanassova, S.; Sirakov, I.; Velichkova, K.; Marinova, M.H.; Yakimov, K. Content of Pb and Zn in Sediments and Hydrobionts as Ecological Markers for Pollution Assessment of Freshwater Objects in Bulgaria—A Review. Int. J. Environ. Res. Public Health 2022, 19, 9600. [Google Scholar] [CrossRef] [PubMed]
- Valkova, E.; Atanasov, V.; Veleva, P. Content of Fe and Mn in waters and zebra mussel (Dressena polymorpha) from Ovcharitsa Dam, Stara Zagora region, Bulgaria. Bulg. J. Agric. Sci. 2020, 26, 870–876. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valkova, E.; Atanasov, V.; Marinova, M.H.; Yordanova, A.; Yakimov, K.; Kutsarov, Y. Application of Crustaceans as Ecological Markers for the Assessment of Pollution of Brackish Lakes of Bulgaria Based on Their Ability to Accumulate the Heavy Metals Cd, Zn and Ni. Limnol. Rev. 2024, 24, 282-300. https://doi.org/10.3390/limnolrev24030017
Valkova E, Atanasov V, Marinova MH, Yordanova A, Yakimov K, Kutsarov Y. Application of Crustaceans as Ecological Markers for the Assessment of Pollution of Brackish Lakes of Bulgaria Based on Their Ability to Accumulate the Heavy Metals Cd, Zn and Ni. Limnological Review. 2024; 24(3):282-300. https://doi.org/10.3390/limnolrev24030017
Chicago/Turabian StyleValkova, Elica, Vasil Atanasov, Margarita H. Marinova, Antoaneta Yordanova, Kristian Yakimov, and Yordan Kutsarov. 2024. "Application of Crustaceans as Ecological Markers for the Assessment of Pollution of Brackish Lakes of Bulgaria Based on Their Ability to Accumulate the Heavy Metals Cd, Zn and Ni" Limnological Review 24, no. 3: 282-300. https://doi.org/10.3390/limnolrev24030017
APA StyleValkova, E., Atanasov, V., Marinova, M. H., Yordanova, A., Yakimov, K., & Kutsarov, Y. (2024). Application of Crustaceans as Ecological Markers for the Assessment of Pollution of Brackish Lakes of Bulgaria Based on Their Ability to Accumulate the Heavy Metals Cd, Zn and Ni. Limnological Review, 24(3), 282-300. https://doi.org/10.3390/limnolrev24030017