Zooplankton Assemblages of an Argentinean Saline Lake during Three Contrasting Hydroperiods and a Comparison with Hatching Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field and Laboratory Work
3. Results
3.1. Environmental Parameters
3.2. Zooplankton
3.3. Hatching Experiments
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golubkov, S.; Shadrin, N.; Golubkov, M.; Balushkina, E.; Litvinchuk, L. Food chains and their dynamics in ecosystems of shallow lakes with different water salinities. Russ. J. Ecol. 2018, 5, 442–448. [Google Scholar] [CrossRef]
- Hammer, U.T. Saline Lake Ecosystems of the World. Monographiae Biologicae 59; Dr. W. Junk Publishers: Dordrecht, Germany, 1986; p. 616. [Google Scholar]
- Shadrin, N.; Anufriieva, E.; Gajardo, G. Ecosystems of inland saline waters in the world of change. Water 2023, 15, 52. [Google Scholar] [CrossRef]
- Saccò, M.; White, N.; Harrod, C.; Salazar, G.; Aguilar, P.; Cubillos, C.F.; Meredith, K.; Baxter, B.K.; Oren, A.; Anufriieva, E.; et al. Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 2021, 96, 2828–2850. [Google Scholar] [CrossRef] [PubMed]
- Gajardo, G.; Redón, S. Andean hypersaline lakes in the Atacama Desert, northern Chile: Between lithium exploitation and unique biodiversity conservation. Conserv. Sci. Pract. 2019, 1, e94. [Google Scholar] [CrossRef]
- Williams, W.D. Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environ. Conserv. 2002, 29, 154–167. [Google Scholar] [CrossRef]
- Velasco, J.; Gutiérrez-Cánovas, C.; Botella-Cruz, M.; Sánchez-Fernández, D.; Arribas, P.; Carbonell, J.; Millán, A.; Pallarés, S. Performance effects of salinity changes on aquatic organisms in a multiple stressor context. Philos. Trans. B 2018, 374, 20180011. [Google Scholar] [CrossRef]
- Herbst, D. Gradients of salinity stress, environmental stability and water chemistry as a templet for defining habitat types and physiological strategies in inland salt waters. Hydrobiologia 2001, 466, 209–219. [Google Scholar] [CrossRef]
- Hall, C.; Burns, C. Responses of crustacean zooplankton to seasonal and tidal salinity changes in the coastal Lake Waihola, New Zealand. N. Z. J. Mar. Freshw. Res. 2003, 37, 31–43. [Google Scholar] [CrossRef]
- Ivanova, M.; Kazantseva, T. Effect of water pH and total dissolved solids on the species diversity of pelagic zooplankton in lakes: A statistical analysis. Russ. J. Ecol. 2006, 37, 264–270. [Google Scholar] [CrossRef]
- Echaniz, S.; Vignatti, A. The zooplankton of the shallow lakes of the semi-arid region of southern South America. Ann. Limnol.—Int. J. Lim. 2017, 53, 345–360. [Google Scholar] [CrossRef]
- Keith, D.; Ferrer-Paris, J.; Nicholson, E.; Bishop, M.; Polidoro, B.; Ramirez-Llodra, E.; Tozer, M.; Nel, J.; Mac Nally, R.; Gregr, E.; et al. A function-based typology for Earth’s ecosystems. Nature 2022, 610, 513–518. [Google Scholar] [CrossRef]
- Schwartz, S.; Jenkins, D. Temporary aquatic habitats: Constraints and opportunities. Aquat. Ecol. 2000, 34, 3–8. [Google Scholar] [CrossRef]
- Vargas, A.; Brazil, T.; Santangelo, J.; Bozelli, R. Long-term droughts change the hatching patterns of zooplankton resting eggs from permanent and temporary lakes. Freshw. Biol. 2024, 69, 635–644. [Google Scholar] [CrossRef]
- Incagnone, G.; Marrone, F.; Barone, R.; Robba, L.; Naselli-Flores, L. How do freshwater organisms cross the ‘‘dry ocean’’? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 2015, 750, 103–123. [Google Scholar] [CrossRef]
- Lenormand, T.; Nougué, O.; Jabbour-Zahab, R.; Arnaud, F.; Dezileau, L.; Chevin, L.; Sánchez, M. Resurrection ecology in Artemia. Evol. Appl. 2018, 11, 76–87. [Google Scholar] [CrossRef]
- Odriozola, M.; Zagarese, H.; Diovisalvi, N. Zooplankton hatching from dormant eggs in a large Pampean shallow lake. Hydrobiologia 2020, 847, 2097–2111. [Google Scholar] [CrossRef]
- Panarelli, E.; Nielsen, D.; Holland, A. Cladocera resting egg banks in temporary and permanent wetlands. J. Limnol. 2021, 80, 1971. [Google Scholar] [CrossRef]
- Alekseev, V.; Ravera, O. Introductory notes to the workshop: Diapause in Invertebrates. J. Limnol. 2004, 63 (Suppl. S1), 3–4. [Google Scholar]
- Mura, G. Structure and functioning of the “egg bank” of the Fairy Shrimp in a temporary pool: Chirocephalus ruffoi from Pollino National Park (Southern Italy) as a case study. Int. Rev. Hydrobiol. 2004, 89, 35–50. [Google Scholar] [CrossRef]
- Schröder, T. Diapuse in monogonont rotifers. Hydrobiologia 2005, 546, 291–306. [Google Scholar] [CrossRef]
- Hairston, N.; Bohonak, A.J. Copepod reproductive strategies: Life-history theory, phylogenetic pattern and invasion of inland waters. J. Mar. Syst. 1998, 15, 23–34. [Google Scholar] [CrossRef]
- Santer, B.; Hansen, A. Diapause of Cyclops vicinus (Uljanin) in Lake Søbygård: Indication of a risk-spreading strategy. Hydrobiologia 2006, 560, 217–226. [Google Scholar] [CrossRef]
- Hansen, B. Copepod embryonic dormancy: An egg is not just an egg. Biol. Bull. 2019, 237, 145–169. [Google Scholar] [CrossRef]
- Gerhard, M.; Iglesias, C.; Clemente, J.; Goyenola, G.; Meerhoff, M.; Pacheco, J.; Teixeira-de Mello, F.; Mazzeo, N. What can resting egg banks tell about cladoceran diversity in a shallow subtropical lake? Hydrobiologia 2016, 798, 75–86. [Google Scholar] [CrossRef]
- Brendonck, L.; De Meester, L. Egg banks in freshwater zooplankton: Evolutionary and ecological archives in the sediment. Hydrobiologia 2003, 491, 65–84. [Google Scholar] [CrossRef]
- Vandekerkhove, J.; Declerck, S.; Brendonck, L.; Conde-Porcuna, J.; Jeppesen, E.; De Meester, L. Hatching of cladoceran resting eggs: Temperature and photoperiod. Freshw. Biol. 2005, 50, 96–104. [Google Scholar] [CrossRef]
- Ruggiero, A.; Ezcurra, C. Regiones y transiciones biogeográficas: Complementariedad de los análisis en biogeografía histórica y ecológica. In Una Perspectiva Latinoamericana de la Biogeografía; Morrone, J.J., Llorente, J., Eds.; Las Prensas de Ciencias, Universidad Autónoma de México: Distrito Federal, Mexico, 2003; pp. 141–154. [Google Scholar]
- D’Ambrosio, S.; Claps, M.; García, A. Zooplankton diversity of a protected and vulnerable wetland system in southern South America (Llancanelo area, Argentina). Int. Aquat. Res. 2016, 8, 65–80. [Google Scholar] [CrossRef]
- Viglizzo, E.F. El agro, el clima y el agua en La pampa semiárida: Revisando paradigmas. In Condiciones para el Desarrollo de Producciones Agrícola-Ganaderas en el SO Bonaerense; Academia Nacional de Agronomía y Veterinaria: Buenos Aires, Argentina, 2011; Volume LXIV, pp. 251–267. [Google Scholar]
- Echaniz, S.; Cabrera, G.; Vignatti, A. The ecology of the saline lakes in the semiarid Pampa central (Argentina): Limnological characterization and zooplankton of Utracán. Adv. Life Sci. 2015, 5, 64–72. [Google Scholar] [CrossRef]
- Vignatti, A.; Cabrera, G.; Echaniz, S. Population dynamics of the brine shrimp Artemia persimilis Piccinelli & Prosdocimi, 1968 (Crustacea, Anostraca) in a hypersaline lake of the Central Pampa (Argentina). Biota Neotrop. 2017, 17, e20170353. [Google Scholar] [CrossRef]
- García-Roger, M.; Armengol-Díaz, X.; Carmona, M.; Serra, M. Assessing rotifer diapausing egg bank diversity and abundance in brackish temporary environments: An ex situ sediment incubation approach. Fund. Appl. Limnol. 2008, 173, 79–88. [Google Scholar] [CrossRef]
- Vergara, G.; Casagrande, G. Estadísticas agroclimáticas de la Facultad de Agronomía, Santa Rosa, La Pampa, Argentina. Rev. Fac. Agron. UNLPam 2012, 22, 3–74. [Google Scholar]
- Russián, G.; Agosta, E.; Compagnucci, R. Variaciones en baja frecuencia de la precipitación estacional en la región pampa amarilla y posibles forzantes. Meteorologica 2015, 40, 17–42. Available online: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850-468X2015000100002&lng=es&nrm=iso (accessed on 6 March 2024).
- Maenza, R.; Agosta, E.; Bettolli, M. Climate change and precipitation variability over the western ‘Pampas’ in Argentina. Int. J. Climatol. 2017, 37, 445–463. [Google Scholar] [CrossRef]
- Morello, J.; Matteucci, S.; Rodríguez, A.; Silva, M. Ecorregiones y Complejos Ecosistémicos Argentinos; Orientación Gráfica Editores: Buenos Aires, Argentina, 2012; p. 800. [Google Scholar]
- Radzikowski, J.; Krupińska, K.; Ślusarczyk, M. Different thermal stimuli initiate hatching of Daphnia diapausing eggs originating from lakes and temporary waters. Limnology 2017, 19, 81–88. [Google Scholar] [CrossRef]
- Sherwood, J.; Stagnitti, F.; Kokkinn, M.; Williams, W. Dissolved oxygen concentrations in hypersaline waters. Limnol. Oceanogr. 1991, 36, 235–250. [Google Scholar] [CrossRef]
- Kalff, J. Limnology. Inland Water System; Prentice Hall: Upper Saddle River, NJ, USA, 2002; p. 592. [Google Scholar]
- Onbé, T. Sugar flotation method for sorting the resting eggs of marine cladocerans and copepods from sea-bottom sediment. Bull. Jpn. Soc. Fish. Oceanogr. 1978, 44, 1411. [Google Scholar] [CrossRef]
- Mugrabe, G.; Barros, S.; Marazzo, A.; Valentin, J. Hatching rates of resting eggs of Cladocera (Crustacea; Branchiopoda) at a tropical bay, Brazil. Braz. J. Biol. 2007, 67, 527–530. [Google Scholar] [CrossRef]
- Lukić, D.; Vad, C.; Horváth, Z. Isolation by sugar flotation has no direct effect on the hatching success of zooplankton resting eggs. J. Limnol. 2016, 75, 415–421. [Google Scholar] [CrossRef]
- Sokal, R.; Rohlf, F. Biometría. Principios y Métodos Estadísticos en la Investigación Biológica; Blume: Madrid, Spain, 1979; p. 832. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996; p. 663. [Google Scholar]
- Hammer, Ø.; Harper, D.; Ryan, P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2015, 4, 1–9. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; González, L.; Tablada, M.C.; Robledo, W. InfoStat (Versión 2015); Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2015. [Google Scholar]
- Menéndez, M.; Carlucci, D.; Pinna, M.; Comin, F.; Basset, A. Effect of nutrients on decomposition of Ruppia cirrhosa in a shallow coastal lagoon. Hydrobiologia 2003, 506–509, 729–735. [Google Scholar] [CrossRef]
- Obrador, B.; Pretus, J.; Menéndez, M. Spatial distribution and biomass of aquatic rooted macrophytes and their relevance in the metabolism of a Mediterranean coastal lagoon. Sci. Mar. 2007, 71, 57–64. [Google Scholar] [CrossRef]
- Vignatti, A.; Capecce, C.; Cabrera, G.; Echaniz, S. Biology of Artemia persimilis Piccinelli and Prosdocimi, 1968 in a hypersaline lake in a semiarid protected area (Parque Luro Reserve, La Pampa, Argentina). Limnetica 2020, 39, 61–72. [Google Scholar] [CrossRef]
- Echaniz, S.; Cabrera, G.; Vignatti, A. Limnological parameters and population structure of Artemia persimilis Piccinelli and Prosdocimi, 1968 (Crustacea, Anostraca) in La Amarga, a hypersaline lake of La Pampa (Argentina). Res. Zool. 2015, 5, 25–31. [Google Scholar] [CrossRef]
- Fuentes, N.; Gajardo, G. A glimpse to Laguna de los Cisnes, a field laboratory and natural monument in the Chilean Patagonia. Lat. Am. J. Aquat. Res. 2017, 45, 491–495. [Google Scholar] [CrossRef]
- Pilati, A.; Biasotti, A.; Montelpare, A. Corta meromixis en un lago somero de la región semiárida pampeana. Biol. Acuát. 2023, 42, 37. [Google Scholar] [CrossRef]
- Cabrera, G.; Vignatti, A.; Echaniz, S.; Escalante, A. Temperature and salinity effects on postembryonic development of the Neotropical calanoid Boeckella poopoensis Marsh, 1906 (Crustacea, Copepoda). Mar. Freshw. Behav. Physiol. 2021, 54, 169–180. [Google Scholar] [CrossRef]
- Pilati, A.; Echaniz, S.; Faguaga, C.; Vignatti, A.; Cabrera, G. An experimental salt reduction in a lake with long-term hypersaline conditions does not increase zooplankton diversity but affects the grazing of Artemia persimilis on algae. Limnologica 2018, 70, 26–32. [Google Scholar] [CrossRef]
- Shadrin, N.; Anufriieva, E.; Amat, F.; Eremin, O. Dormant stages of crustaceans as a mechanism of propagation in the extreme and unpredictable environment in the Crimean hypersaline lakes. Chin. J. Oceanol. Limn. 2015, 33, 1362–1367. [Google Scholar] [CrossRef]
- Havel, J.; Shurin, J. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol. Oceanogr. 2004, 49, 1229–1238. [Google Scholar] [CrossRef]
2007 * | 2009–2010 ** | 2017–2018 | (H) | |
---|---|---|---|---|
Depth (m) | 2.00 ± 0.15 | 0.16 ± 0.09 | 1.75 ± 0.17 | H = 22.43; p < 0.05 |
Salinity (g/L) | 32.90 ± 2.70 | 238.05 ± 92.34 | 45.89 ± 10.74 | H = 24.88; p < 0.05 |
Water temperature (°C) | 16.08 ± 7.18 | 16.53 ± 7.61 | 18.14 ± 5.09 | H = −0.12; p > 0.05 |
Transparency (m) | 1.15 ± 0.29 | 0.11 ± 0.06 | 0.32 ± 0.11 | H = 24.54; p < 0.05 |
pH | 9.58 ± 0.13 | 9.21 ± 0.09 | 9.46 ± 0.16 | H = 22.18; p < 0.05 |
Dissolved oxygen (mg/L) | 10.03 ± 2.05 | 2.61 ± 1.64 | 8.22 ± 0.74 | H = 22.34; p < 0.05 |
Chlorophyll-a (mg/m−3) | 1.22 ± 0.92 | 39.16 ± 22.69 | 4.23 ± 4.18 | H = 23.42; p < 0.05 |
Inorg. susp. sol. (mg/L) | 4.30 ± 3.77 | 1545.58 ± 1108.09 | - | H = 16.65; p < 0.05 |
Org. susp. sol. (mg/L) | 5.00 ± 1.89 | 387.65 ± 249.82 | - | H = 15.62; p < 0.05 |
2007 * | 2009–2010 ** | 2017–2018 | ||||
---|---|---|---|---|---|---|
Freq. (%) | Mean Density (ind /L) | Freq. (%) | Mean Density (ind /L) | Freq. (%) | Mean Density (ind /L) | |
Artemia persimilis Piccinelli & Prosdocimi, 1968 | - | - | 68.8 | 56.9 (0–399.3) | 100 | 53.84 (2.4–148) |
Daphnia menucoensis Paggi, 1996 | 41.7 | 0.36 (0–2.3) | - | - | - | - |
Moina eugeniae Olivier, 1954 | 83.3 | 59.76 (0–187.8) | - | - | 57.14 | 71.97 (0–419) |
Boeckella poopoensis Marsh, 1906 | 100 | 113.1 (16–251.7) | - | - | 85.71 | 193.76 (0–1224) |
Cletocamptus deitersi (Richard, 1897) | 83.3 | 1.94 (0–5.8) | - | - | - | - |
Brachionus plicatilis Müller, 1786 | 41.7 | 9.96 (0–103.3) | - | - | 71.43 | 8.93 (0–10.6) |
Hexarthra fennica (Levander, 1892) | 66.7 | 14.7 (0–101.7) | - | - | 71.43 | 424.80 (0–2905) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echaniz, S.A.; Vignatti, A.M.; Cabrera, G.C. Zooplankton Assemblages of an Argentinean Saline Lake during Three Contrasting Hydroperiods and a Comparison with Hatching Experiments. Limnol. Rev. 2024, 24, 301-312. https://doi.org/10.3390/limnolrev24030018
Echaniz SA, Vignatti AM, Cabrera GC. Zooplankton Assemblages of an Argentinean Saline Lake during Three Contrasting Hydroperiods and a Comparison with Hatching Experiments. Limnological Review. 2024; 24(3):301-312. https://doi.org/10.3390/limnolrev24030018
Chicago/Turabian StyleEchaniz, Santiago Andrés, Alicia María Vignatti, and Gabriela Cecilia Cabrera. 2024. "Zooplankton Assemblages of an Argentinean Saline Lake during Three Contrasting Hydroperiods and a Comparison with Hatching Experiments" Limnological Review 24, no. 3: 301-312. https://doi.org/10.3390/limnolrev24030018
APA StyleEchaniz, S. A., Vignatti, A. M., & Cabrera, G. C. (2024). Zooplankton Assemblages of an Argentinean Saline Lake during Three Contrasting Hydroperiods and a Comparison with Hatching Experiments. Limnological Review, 24(3), 301-312. https://doi.org/10.3390/limnolrev24030018