Dam Impact on Fish Assemblages Associated with Macrophytes in Natural and Regulated Floodplains of Pandeiros River Basin
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Junk, W.J.; Welcomme, R.L. Floodplains. In Wetlands and Shallow Continental Water Bodies; Patten, B.C., Ed.; SPB Academic Publishers: Amsterdam, The Netherlands, 1990; pp. 491–524. [Google Scholar]
- Allen, D.C.; Datry, T.; Boersma, K.S.; Bogan, M.T.; Boulton, A.J.; Bruno, D.; Busch, M.H.; Costigan, K.H.; Dodds, W.K.; Fritz, K.M.; et al. River ecosystem conceptual models and non-perennial rivers: A critical review. Wiley Interdiscip. Rev. Water 2020, 7, e1473. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. Can. J. Fish. Aquat. Sci. 1989, 106, 110–127. [Google Scholar]
- Reid, M.A.; Reid, M.C.; Thoms, M.C. Ecological significance of hydrological connectivity for wetland plant communities on a dryland floodplain river, MacIntyre River, Australia. Aquat. Sci. 2016, 78, 139–158. [Google Scholar] [CrossRef]
- Junk, W.J.; Wantzen, K.M. The flood pulse concept: New aspects, approaches and applications—An update. In Second International Symposium on the Management of Large Rivers for Fisheries; Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific: Phnom Penh, Cambodia, 2004; pp. 117–149. [Google Scholar]
- Lake, P.S. Disturbance, patchiness, and diversity in streams. J. N. Am. Benthol. Soc. 2000, 19, 573–592. [Google Scholar] [CrossRef]
- Simões, N.R.; Dias, J.D.; Leal, C.M.; Braghin, L.D.S.M.; Lansac-Tôha, F.A.; Bonecker, C.C. Floods control the influence of environmental gradients on the diversity of zooplankton communities in a neotropical floodplain. Aquat. Sci. 2013, 75, 607–617. [Google Scholar] [CrossRef]
- Shao, X.; Fang, Y.; Jawitz, J.W.; Yan, J.; Cui, B. River network connectivity and fish diversity. Sci. Total Environ. 2019, 689, 21–30. [Google Scholar] [CrossRef]
- Pettit, N.E.; Bayliss, P.; Davies, P.M.; Hamilton, S.K.; Warfe, D.M.; Bunn, S.E.; Douglas, M.M. Seasonal contrasts in carbon resources and ecological processes on a tropical floodplain. Freshw. Biol. 2011, 56, 1047–1064. [Google Scholar] [CrossRef]
- Tockner, K.; Stanford, J.A. Riverine Flood Plains Present State and Future Trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef]
- Agostinho, A.A.; Gomes, L.C.; Zalewski, M. The importance of floodplains for the dynamics of fish communities of the upper river Paraná. Ecohydrol. Hydrobiol. 2001, 1, 209–217. [Google Scholar]
- Pompeu, P.S.; Godinho, H.P. Ictiofauna de três lagoas marginais do médio São Francisco. In Águas, Peixes e Pescadores do São Francisco das Gerais; PUC Minas: Belo Horizonte, Brazil, 2003. [Google Scholar]
- Moreira, M.F.; Peressin, A.; Pompeu, O.S. Small rivers, great importance: Refuge and growth sites of juvenile migratory fishes in the upper São Francisco Basin, Brazil. Fish. Man. Ecol. 2022, 30, 1–10. [Google Scholar] [CrossRef]
- Petry, A.C.; Agostinho, A.A.; Gomes, L.C. Fish assemblages of tropical floodplain lagoons: Exploring the role of connectivity in a dry year. Neotrop. Ichthyol. 2003, 1, 111–119. [Google Scholar] [CrossRef]
- Quirino, B.A.; Carniatto, N.; Thomaz, S.M.; Fugi, R. Small fish diet in connected and isolated lakes in a Neotropical floodplain. Ecol. Freshw. Fish. 2019, 28, 97–109. [Google Scholar] [CrossRef]
- Rozas, L.P.; Odum, W.E. Occupation of submerged aquatic vegetation by fishes: Testing the roles of food and refuge. Oecologia 1988, 77, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Reynalte-Tataje, D.A.; Agostinho, A.A.; Bialetzki, A. Temporal and spatial distributions of the fish larval assemblages of the Ivinheima River sub-basin (Brazil). Environ. Biol. Fishes 2013, 96, 811–822. [Google Scholar] [CrossRef]
- Bornette, G.; Amoros, C.; Lamouroux, N.L. Aquatic plant diversity in riverine wetlands: The role of connectivity. Freshw. Biol. 1998, 39, 267–283. [Google Scholar] [CrossRef]
- Coops, H.; Hanganu, J.; Tudor, M.; Oosterberg, W. Classification of Danube Delta lakes based on aquatic vegetation and turbidity. Hydrobiologia 1999, 415, 187–191. [Google Scholar] [CrossRef]
- Geest, G.J.V.; Wolters, H.; Roozen, F.C.J.M.; Coops, H.; Roijackers, R.M.M.; Buijse, A.D.; Scheffer, M. Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia 2005, 539, 239–248. [Google Scholar] [CrossRef]
- Coelho, F.F.; Lopes, F.S.; Sperber, C.F. Persistence strategy of Salvinia auriculata aublet in temporary ponds of southern Pantanal, Brazil. Aquat. Bot. 2005, 81, 343–352. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Piedade, M.T.F.; Wittmann, A.D.O.; Franco, A.C. Plant reproduction in the Central Amazonian floodplains: Challenges and adaptations. AoB Plants 2010, 2010, plq009. [Google Scholar] [CrossRef]
- Junk, W.J.; Piedade, M.T.F. Herbaceous plants of the amazon floodplain near Manaus: Species diversity and adaptations to the flood pulse. Amazoniana 1993, 12, 467–484. [Google Scholar]
- Pott, V.J.; Pott, A.; Lima, L.C.P.; Moreira, S.N.; Oliveira, A.K.M. Aquatic macrophyte diversity of the Pantanal wetland and upper basin. Braz. J. Biol. 2011, 71, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Warwick, N.W.M.; Brock, M.A. Plant reproduction in temporary wetlands: The effects of seasonal timing, depth, and duration of flooding. Aquat. Bot. 2003, 77, 153–167. [Google Scholar] [CrossRef]
- Piedade, M.T.F.; Junk, W.J.; Long, S.P. The productivity of the C4 grass Eichinocloa polystachya on the Amazon floodplain. Ecology 1991, 72, 1456–1463. [Google Scholar] [CrossRef]
- Demetrio, G.R.; Barbosa, M.E.A.; Coelho, F.F. Water level-dependent morphological plasticity in Sagittaria montevidensis Cham. and Schl. (Alismataceae). Braz. J. Biol. 2014, 74, 199–206. [Google Scholar] [CrossRef]
- Singh, K.K.; Usha, K.; Sharma, B.M. A study on the biomass variation of the macrophytes in Poiroupat Lake, Manipur, northeast India. Sci. Vis. 2018, 18, 22–31. [Google Scholar] [CrossRef]
- Lycarião, T.A.; Dantas, Ê.W. Interactions between different biological forms of aquatic macrophytes in a eutrophic tropical reservoir in Northeastern Brazil. Rev. Biol. Trop. 2017, 65, 1095–1104. [Google Scholar] [CrossRef]
- Tonn, W.M.; Magnuson, J.J. Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 1982, 63, 1149–1166. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Van Oosterhout, M.P.; De Vlieger, B.; Goodson, J.M. Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Res. Appl. 2006, 22, 667–680. [Google Scholar] [CrossRef]
- Jones, P.E.; Consuegra, S.; Börger, L.; Jones, J.; Garcia de Leaniz, C. Impacts of artificial barriers on the connectivity and dispersal of vascular macrophytes in rivers: A critical review. Freshw. Biol. 2020, 65, 1165–1180. [Google Scholar] [CrossRef]
- Savino, J.F.; Stein, R.A. Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation. Trans. Am. Fish. Soc. 1982, 111, 255–266. [Google Scholar] [CrossRef]
- Petry, P.; Bayley, P.B.; Markle, D.F. Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain. J. Fish Biol. 2003, 63, 547–579. [Google Scholar] [CrossRef]
- Benchimol, M.; Peres, C.A. Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia. PLoS ONE 2015, 10, e0129818. [Google Scholar] [CrossRef] [PubMed]
- Peñas, F.J.; Barquín, J. Assessment of large-scale patterns of hydrological alteration caused by dams. J. Hydrol. 2019, 572, 706–718. [Google Scholar] [CrossRef]
- Ziv, G.; Baran, E.; Nam, S.; Rodríguez-Iturbe, I.; Levin, S.A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl. Acad. Sci. USA 2012, 109, 5609–5614. [Google Scholar] [CrossRef]
- Agostinho, A.A.; Pelicice, F.M.; Gomes, L.C. Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Braz. J. Biol. 2008, 68, 1119–1132. [Google Scholar] [CrossRef]
- Graf, W.L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 2006, 79, 336–360. [Google Scholar] [CrossRef]
- Miranda, L.E.; Habrat, M.D.; Miyazono, S. Longitudinal gradients along a reservoir cascade. Trans. Am. Fish. Soc. 2008, 137, 1851–1865. [Google Scholar] [CrossRef]
- Tanaka, T.; Tachikawa, Y.; Ichikawa, Y.; Yorozu, K. Impact assessment of upstream flooding on extreme flood frequency analysis by incorporating a flood-inundation model for flood risk assessment. J. Hydrol. 2017, 554, 370–382. [Google Scholar] [CrossRef]
- Borba, C.S.; Latini, J.D.; Baumgartner, M.T.; Gomes, L.C.; Agostinho, A.A. Short-term effects in a reduced flow stretch: The case of the Antas River in South Brazil. River Res. Appl. 2019, 35, 386–395. [Google Scholar] [CrossRef]
- Carvalho, D.R.; Araújo, F.G. Influences of small hydroelectric power plants on homogenization of the ichthyofauna in a tropical river. Environ. Biol. Fishes 2020, 103, 757–770. [Google Scholar] [CrossRef]
- Freitas, C.C.; Mereles, A.M.; Pereira, V.D.; Souza, S.F.; Hurd, L.; Kahn, J.; Morais, G.; Souza, C.G.R. Death by a thousand cuts: Small local dams can produce large regional impacts in the Brazilian Legal Amazon. Environ. Sci. Policy 2022, 136, 447–452. [Google Scholar] [CrossRef]
- ANEEL. Sistema de Informações de Geração da Aneel (SIGA). Available online: https://dados.gov.br/dados/conjuntos-dados/siga-sistema-de-informacoes-de-geracao-da-aneel (accessed on 20 February 2024).
- Godinho, A.L.; Kynard, B.; Martinez, C.B. Supplemental water releases for fisheries restoration in a Brazilian floodplain river: A conceptual model. River Res. Appl. 2007, 23, 947–962. [Google Scholar] [CrossRef]
- Ziober, S.R.; Bialetzki, A.; Gomes, L.C.; Kipper, D. The importance of a marginal lagoon as a fish nursery in the upper Paraná River floodplain. Acta Limnol. Bras. 2007, 19, 369–381. [Google Scholar]
- Baumgartner, M.T.; de Oliveira, A.G.; Agostinho, A.A.; Gomes, L.C. Fish functional diversity responses following flood pulses in the upper Paraná River floodplain. Ecol. Freshw. Fish. 2018, 27, 910–919. [Google Scholar] [CrossRef]
- Godinho, H.P.; Godinho, A.L. Águas, Peixes e Pescadores do São Francisco das Minas Gerais; Editora PUC Minas: Belo Horizonte, Brazil, 2003. [Google Scholar]
- Linares, M.S.; Assis, W.; de Castro Solar, R.R.; Leitão, R.P.; Hughes, R.M.; Callisto, M. Small hydropower dam alters the taxonomic composition of benthic macroinvertebrate assemblages in a neotropical river. River Res. Appl. 2019, 35, 725–735. [Google Scholar] [CrossRef]
- Nunes, Y.R.F.; Azevedo, I.F.P.; Neves, W.V.; Veloso, M.D.D.M.; Souza, R.; Fernandes, G.W. Pandeiros: O pantanal mineiro. MG Biota 2009, 2, 4–17. [Google Scholar]
- Santos, U.; Silva, P.C.; Barros, L.C.; Dergam, J.A. Fish fauna of the Pandeiros River, a region of environmental protection for fish species in Minas Gerais state, Brazil. Check List 2015, 11, 1507. [Google Scholar] [CrossRef]
- Drummond, G.M.; Martins, C.S.; Machado, A.B.M.; Sebaio, F.A.; Antonini, Y. Biodiversidade em Minas Gerais: Um Atlas para sua Conservação. Fundação Biodiversitas: Belo Horizonte, Brazil, 2005; Volume 2, 222p. [Google Scholar]
- Callisto, M.; Solar, R.; Pelegrine, D.R.; Linares, M.S. Beta diversity of macro invertebrate assemblages associated with aquatic macrophytes in shallow lakes within a tropical floodplain dammed river. Acta Limnol. Bras. 2024, 36, e32. [Google Scholar] [CrossRef]
- Fonseca, E.M.B.; Grossi, W.R.; Fiorine, R.A.; Prado, N.J.S. PCH Pandeiros: Uma complexa interface com a gestão ambiental regional. In Anais do VI Simpósio Bras. sobre Pequenas e Médias Centrais Hidrelétricas; Associação Brasileira de Recursos Hídricos: Belo Horizonte, Brazil, 2008; pp. 1–16. [Google Scholar]
- Cachapuz, P.B.B. Usinas da Cemig: A História da Eletricidade em Minas e no Brasil, 1952–2005; Centro da Memória da Eletricidade no Brasil: Rio de Janeiro, Brazil, 2006. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Thomaz, S.M.; Dibble, E.D.; Evangelista, L.R.; Higuti, J.; Bini, L.M. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw. Biol. 2008, 53, 358–367. [Google Scholar] [CrossRef]
- Ward, J.V.; Wiens, J.A. Ecotones of riverine landscape: Role and typology, spatio-temporal dynamics, and river regulation. Ecohydrol. Hydrobiol. 2001, 1, 25–36. [Google Scholar]
- Agostinho, A.A.; Gomes, L.C.; Thomaz, S.M.; Hahn, N.A. The Upper Paraná River and its floodplain: Main characteristics and perspectives for management and conservation. In The Upper Paraná River and Its Floodplain: Physical Aspects, Ecology and Conservation; Thomaz, S.M., Agostinho, A.A., Hahn, A.A., Eds.; Backhuys: Leiden, The Netherlands, 2004; pp. 381–393. [Google Scholar]
- Górski, K.; Collier, K.J.; Duggan, I.C.; Taylor, C.M.; Hamilton, D.P. Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system. Freshw. Biol. 2013, 58, 1458–1470. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rain forest and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.M.; Thomaz, S.M. Aquatic macrophytes diversity in lagoons of a tropical floodplain: The role of connectivity and water level. Austral Ecol. 2007, 32, 177–190. [Google Scholar] [CrossRef]
- Bernez, I.; Daniel, H.; Haury, J.; Ferreira, M.T. Combined effects of environmental factors and regulation on macrophyte vegetation along three rivers in western France. River Res. Appl. 2004, 20, 43–59. [Google Scholar] [CrossRef]
- Benítez-Mora, A.; Camargo, J.A. Ecological responses of aquatic macrophytes and benthic macroinvertebrates to dams in the Henares River Basin (Central Spain). Hydrobiologia 2014, 728, 167–178. [Google Scholar] [CrossRef]
- Cornacchia, L.; Van De Koppel, J.; van der Wal, D.; Wharton, G.; Puijalon, S.; Bouma, T.J. Landscapes of facilitation: How self-organized patchiness of aquatic macrophytes promotes diversity in streams. Ecology 2018, 99, 832–847. [Google Scholar] [CrossRef] [PubMed]
- Roque, F.O.; Siqueira, T.; Bini, L.M.; Ribeiro, M.C.; Tambosi, L.R.; Ciocheti, G.; Trivinho-Strixino, S. Untangling associations between chironomid taxa in Neotropical streams using local and landscape filters. Freshw. Biol. 2010, 55, 847–865. [Google Scholar] [CrossRef]
- Dibble, E.D.; Pelicice, F.M. Influence of aquatic plant-specific habitat on an assemblage of small neotropical floodplain fishes. Ecol. Freshw. Fish. 2010, 19, 381–389. [Google Scholar] [CrossRef]
- Pelicice, F.M.; Agostinho, A.A.; Thomaz, S.M. Fish assemblages associated with Egeria in a tropical reservoir: Investigating the effects of plant biomass and diel period. Acta Oecologica 2005, 27, 9–16. [Google Scholar] [CrossRef]
- Pelicice, F.M.; Thomaz, S.M.; Agostinho, A.A. Simple relationships to predict attributes of fish assemblages in patches of submerged macrophytes. Neotrop. Ichthyol. 2008, 6, 543–550. [Google Scholar] [CrossRef]
- Pacheco, E.B.; Da-Silva, C.J. Fish associated with aquatic macrophytes in the Chacororé-Sinhá Mariana Lake system and Mutum River, Pantanal of Mato Grosso, Brazil. Braz. J. Biol. 2009, 69, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.C.; Bulla, C.K.; Agostinho, A.A.; Vasconcelos, L.P.; Miranda, L.E. Fish assemblage dynamics in a Neotropical floodplain relative to aquatic macrophytes and the homogenizing effects of a flood pulse. Hydrobiologia 2012, 685, 97–107. [Google Scholar] [CrossRef]
- Lopes, T.M.; Cunha, E.R.; Silva, J.C.B.; Behrend, R.D.; Gomes, L.C. Dense macrophytes influence the horizontal distribution of fish in floodplain lakes. Environ. Biol. Fishes 2015, 98, 1741–1755. [Google Scholar] [CrossRef]
- Casatti, L.; Mendes, H.F.; Ferreira, K.M. Aquatic macrophytes as feeding site for small fishes in the Rosana reservoir, Paranapanema River, Southeastern Brazil. Braz. J. Biol. 2003, 63, 213–222. [Google Scholar] [CrossRef]
- Pelicice, F.M.; Agostinho, A.A. Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir, Brazil. Ecol. Freshw. Fish 2006, 15, 10–19. [Google Scholar] [CrossRef]
- Dibble, E.D.; Killgore, K.J.; Harrel, S.L. Assessment of fish-plant interactions. In Multidimensional Approaches to Reservoir Fisheries Management; Miranda, L.E., Devries, D.R., Eds.; American Fisheries Society: Bethesda, MD, USA, 1996. [Google Scholar]
- Choi, J.Y.; Kim, S.K. Effects of aquatic macrophytes on spatial distribution and feeding habits of exotic fish species Lepomis macrochirus and Micropterus salmoides in shallow reservoirs in South Korea. Sustainability 2020, 12, 1447. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Z.; He, H.; Zhen, W.; Guan, B.; Chen, F.; Li, K.; Zhong, P.; Teixeira-de Mello, F.; Jeppesen, E. Submerged macrophytes facilitate dominance of omnivorous fish in a subtropical shallow lake: Implications for lake restoration. Hydrobiologia 2016, 775, 97–107. [Google Scholar] [CrossRef]
- Arantes, C.C.; Fitzgerald, D.B.; Hoeinghaus, D.J.; Winemiller, K.O. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Curr. Opin. Environ. Sustain. 2019, 37, 28–40. [Google Scholar] [CrossRef]
- Poff, N.L.; Olden, J.D.; Merritt, D.M.; Pepin, D.M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl. Acad. Sci. USA 2007, 104, 5732–5737. [Google Scholar] [CrossRef]
- Souza, R.C.R.; Bueno, M.L.; Rufino, M.; Moreira, M.F.; Pompeu, P.S. Ampliando o conhecimento sobre os peixes do rio Pandeiros. MG Biota 2019, 12, 57–77. [Google Scholar]
- Rosa, G.R.; Salvador, G.N.; Bialetzki, A.; Santos, G.B. Spatial and temporal distribution of ichthyoplankton during an unusual period of low flow in a tributary of the São Francisco River, Brazil. River Res. Appl. 2017, 34, 69–82. [Google Scholar] [CrossRef]
- Anderson, E.P.; Freeman, M.C.; Pringle, C.M. Ecological consequences of hydropower development in Central America: Impacts of small dams and water diversion on neotropical stream fish assemblages. River Res. Appl. 2006, 22, 397–411. [Google Scholar] [CrossRef]
- Cella-Ribeiro, A.; da Costa Doria, C.R.; Dutka-Gianelli, J.; Alves, H.; Torrente-Vilara, G. Temporal fish community responses to two cascade run-of-river dams in the Madeira River, Amazon basin. Ecohydrology 2017, 10, e1889. [Google Scholar] [CrossRef]
- Cooper, A.R.; Infante, D.M.; Daniel, W.M.; Wehrly, K.E.; Wang, L.; Brenden, T.O. Assessment of dam effects on streams and fish assemblages of the conterminous USA. Sci. Total Environ. 2017, 586, 879–889. [Google Scholar] [CrossRef]
- Liu, X.; Qin, J.; Xu, Y.; Ouyang, S.; Wu, X. Biodiversity decline of fish assemblages after the impoundment of the Three Gorges Dam in the Yangtze River Basin, China. Rev. Fish Biol. Fish. 2019, 29, 177–195. [Google Scholar] [CrossRef]
- Loures, R.C.; Pompeu, P.S. Temporal changes in fish diversity in lotic and lentic environments along a reservoir cascade. Freshw. Biol. 2019, 64, 1806–1820. [Google Scholar] [CrossRef]
- Rolls, R.J. The role of life-history and location of barriers to migration in the spatial distribution and conservation of fish assemblages in a coastal river system. Biol. Conserv. 2011, 144, 339–349. [Google Scholar] [CrossRef]
- Cooney, P.B.; Kwak, T.J. Spatial extent and dynamics of dam impacts on tropical island freshwater fish assemblages. BioScience 2013, 63, 176–190. [Google Scholar] [CrossRef]
- Han, M.; Fukushima, M.; Kameyama, S.; Fukushima, T.; Matsushita, B. How do dams affect freshwater fish distributions in Japan? Statistical analysis of native and nonnative species with various life histories. Ecol. Res. 2008, 23, 735–743. [Google Scholar] [CrossRef]
- Closs, G.P.; Krkosek, M.; Olden, J.D. Conservation of Freshwater Fishes; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Jellyman, P.G.; Harding, J.S. The role of dams in altering freshwater fish communities in New Zealand. N. Z. J. Mar. Freshw. Res. 2012, 46, 475–489. [Google Scholar] [CrossRef]
- Pringle, C.M.; Freeman, M.C.; Freeman, B.J. Regional effects of hydrologic alterations on riverine macrobiota in the New World: Tropical-temperate comparisons. Bioscience 2000, 50, 807–823. [Google Scholar] [CrossRef]
- Astorg, L.; Sanderson, S.; Côté-Gravel, V.; Sorbara, F.; Windle, M.J.; Hendry, A.P.; Derry, A.M. Different refuge types dampen exotic invasion and enhance diversity at the whole ecosystem scale in a heterogeneous river system. Biol. Invasions 2021, 23, 443–460. [Google Scholar] [CrossRef]
- Vitousek, P.M.; D’Antonio, C.M.; Loope, L.L.; Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 1996, 84, 468–478. [Google Scholar]
- Alves, C.B.M.; Leal, C.G. Aspectos da conservação da fauna de peixes da bacia do rio São Francisco em Minas Gerais. MG Biota 2010, 2, 26–44. [Google Scholar]
- Zarske, A.; Géry, K. Revision der neotropischen Gattung Metynnis Cope, 1878. 1. Evaluation der Typus-exemplare der nominellen Arten (Teleostei: Characiformes: Serrasalmidae). Zool. Abh. 1999, 50, 69–216. [Google Scholar]
- Dias, R.M.; da Silva, J.C.B.; Gomes, L.C.; Agostinho, A.A. Effects of macrophyte complexity and hydrometric level on fish assemblages in a Neotropical floodplain. Environ. Biol. Fishes 2017, 100, 703–716. [Google Scholar] [CrossRef]
Taxon | Life Form | N | R | % N | % R |
---|---|---|---|---|---|
Alismataceae | |||||
Sagittaria sp. | A | 6 | 12 | 5.31% | 30.77% |
Araceae | |||||
Pistia stratiotes | FL | 3 | - | 2.65% | - |
Characeae | |||||
Chara sp. | SF | - | 24 | - | 61.54% |
Hydrocharitaceae | |||||
Elodea sp. | SF | 20 | 1 | 17.70% | 2.56% |
Egeria sp. | SF | 23 | - | 20.35% | - |
Nymphaeaceae | |||||
Nymphaea sp. | FF | 9 | - | 7.96% | - |
Onagraceae | |||||
Ludwigia spp. | FF | 15 | - | 13.27% | - |
Pontederiaceae | |||||
Eichhornia azurea | FF | 12 | - | 10.62% | - |
Eichhornia crassipes | FL | 2 | - | 1.77% | - |
Pontederia sp. | Rf | - | 2 | - | 5.13% |
Salviniaceae | |||||
Salvinia spp. | FL | 23 | - | 20.35% | - |
Total abundance | 113 | 39 | 100.00% | 100.00% |
N | R | ||||
---|---|---|---|---|---|
Taxon | First | Torre | Geraldo | Veio Juca | |
CHARACIFORMES | |||||
Acestrorhynchidae | |||||
Acestrorhynchus lacustres | - | - | - | 1 | - |
Characidae | |||||
Astyanax lacustris | - | - | 5 | 28 | - |
Astyanax fasciatus | 589 | - | - | - | - |
Hyphessobrycon micropterus | 62 | 50 | 9 | 662 | 8 |
Hemigrammus marginatus | - | 3 | 16 | 198 | 180 |
Moenkhausia costae | 5 | 4 | - | 77 | 65 |
Orthospinus franciscensis | 4 | - | - | 49 | - |
Phenacogaster franciscoensis | - | - | - | 2 | - |
Psellogrammus kennedy | - | - | 12 | 14 | - |
Roeboides xenodon | 3 | - | - | 2 | - |
Serrapinnus heterodon | 1 | - | - | 8 | - |
Serrapinnus piaba | 52 | 26 | 7 | 136 | 4 |
Tetragonopterus franciscoensis | 3 | - | - | 6 | - |
Crenuchidae | |||||
Characidium spp. | - | - | 2 | 9 | 13 |
Serrasalmidae | |||||
Metynnis maculatus 1 | 1 | - | 2 | 13 | 144 |
Myleus micans | 3 | - | - | 12 | - |
Anostomidae | |||||
Megaleporinus reinhardti 2 | - | - | - | 7 | - |
Megaleporinus obtusidens 2 | - | - | - | 1 | - |
Curimatella lepidura | 5 | - | - | 6 | - |
Steindachnerina elegans | - | - | - | 5 | - |
Erythrinidae | |||||
Hoplias malabaricus | 1 | - | - | 1 | 3 |
Triportheidae | |||||
Triportheus guentheri | 1 | - | - | - | - |
Cichliformes | |||||
Cichlidae | |||||
Astronotus spp. | 12 | - | - | - | - |
Crenicichla lepidota | - | - | - | 6 | - |
Cichlasoma sanctifranciscense | 1 | - | 5 | 1 | 32 |
GYMNOTIFORMES | |||||
Sternopygidae | |||||
Eigenmannia virescens | - | 8 | - | 61 | - |
Sternopygus macrurus | - | - | - | 5 | - |
Gymnotidae | |||||
Gymnotus carapo | - | 1 | - | - | - |
SILURIFORMES | |||||
Loricariidae | |||||
Hypostomus sp | - | - | - | 1 | - |
SYNBRANCHIFORMES | |||||
Synbranchidae | |||||
Synbranchus marmoratus | 1 | 2 | - | 28 | - |
CYPRINODONTIFORMES | |||||
Poeciliidae | |||||
Poecilia reticulata 1 | 12 | - | 30 | 9 | 10 |
Total abundance | 756 | 94 | 88 | 1347 | 459 |
Total richness | 17 | 7 | 9 | 27 | 9 |
Species | Average Abundance | Contrib. % | Cum. % | |
---|---|---|---|---|
A | N | |||
Hyphessobrycon micropterus | 1.85 | 32.02 | 17.75 | 17.75 |
Hemigrammus marginatus | 33.83 | 10.21 | 17.70 | 35.45 |
Metynnis maculatus | 31.52 | 1.32 | 17.54 | 52.98 |
Moenkhausia costae | 12.57 | 5.28 | 7.81 | 60.80 |
Poecilia reticulata | 8.92 | 2.71 | 6.01 | 66.81 |
Serrapinnus piaba | 1.07 | 8.94 | 5.31 | 72.12 |
Eigenmannia virescens | 0.00 | 8.34 | 4.78 | 76.89 |
Astyanax fasciatus | 0.00 | 8.07 | 4.62 | 81.52 |
Cichlasoma sanctifranciscense | 6.70 | 0.42 | 3.87 | 85.39 |
Synbranchus marmoratus | 0.00 | 5.39 | 3.09 | 88.48 |
Characidium spp. | 2.96 | 1.67 | 2.25 | 90.73 |
Models | Inter. | Condition | S. Macrophyte | R2 | LogLikelihood | AICc | Delta AICc | Weight |
---|---|---|---|---|---|---|---|---|
Macrophyte richness | ||||||||
0.93 | + * | 0.11 | −107.12 | 218.4 | 0.00 | 0.62 | ||
Fish richness | ||||||||
1.96 | + ** | 0.14 | −171.45 | 347.1 | 0.00 | 0.67 | ||
1.85 | + | 0.04 | 0.15 | −171.10 | 348.6 | 1.49 | 0.32 | |
Fish abundance | ||||||||
47.96 | + ** | 0.07 | 376.5 | 759.4 | 0.00 | 0.51 | ||
65.98 | + ** | −7.12 ** | 0.09 | 375.81 | 760.2 | 0.87 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, I.G.; Souza, M.A.d.; Coelho, F.F.; Pompeu, P.S. Dam Impact on Fish Assemblages Associated with Macrophytes in Natural and Regulated Floodplains of Pandeiros River Basin. Limnol. Rev. 2024, 24, 437-449. https://doi.org/10.3390/limnolrev24040025
Prado IG, Souza MAd, Coelho FF, Pompeu PS. Dam Impact on Fish Assemblages Associated with Macrophytes in Natural and Regulated Floodplains of Pandeiros River Basin. Limnological Review. 2024; 24(4):437-449. https://doi.org/10.3390/limnolrev24040025
Chicago/Turabian StylePrado, Ivo Gavião, Marcela Alves de Souza, Flávia Freitas Coelho, and Paulo Santos Pompeu. 2024. "Dam Impact on Fish Assemblages Associated with Macrophytes in Natural and Regulated Floodplains of Pandeiros River Basin" Limnological Review 24, no. 4: 437-449. https://doi.org/10.3390/limnolrev24040025
APA StylePrado, I. G., Souza, M. A. d., Coelho, F. F., & Pompeu, P. S. (2024). Dam Impact on Fish Assemblages Associated with Macrophytes in Natural and Regulated Floodplains of Pandeiros River Basin. Limnological Review, 24(4), 437-449. https://doi.org/10.3390/limnolrev24040025