Structured Light Laser Based on Intra-Cavity Modulation
Abstract
:1. Introduction
2. Extra-Cavity Methods and Intra-Cavity Methods
3. Digital Laser Based on SLM and DMD Modulator
3.1. Digital Laser Based on SLM and DMD Modulator
3.2. Fibre Digital Laser with SLMs
4. Structured Light Laser Based on Metasurfaces
4.1. Solid-State Laser with Metasurfaces
4.2. Fibre Laser with Metasurfaces
5. Integrated Micro-Lasers
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rubinsztein-Dunlop, H.; Forbes, A.; Berry, M.V.; Dennis, M.R.; Andrews, D.L.; Mansuripur, M.; Denz, C.; Alpmann, C.; Banzer, P.; Bauer, T.; et al. Roadmap on structured light. J. Opt. 2016, 19, 13001. [Google Scholar] [CrossRef]
- Rozas, D.; Law, C.T.; Swartzlander, G.A. Propagation dynamics of optical vortices. J. Opt. Soc. Am. B 1997, 14, 3054–3065. [Google Scholar] [CrossRef]
- Forbes, A. Structured light from lasers. Laser Photonics Rev. 2019, 13, 1900140. [Google Scholar] [CrossRef]
- Shujun, Z.; Xiao, L.; Zhiyun, H.; Lu, H.; Yuanying, Z.; Yi, Y.; Xiaodi, T. Light field regulation based on polarization holography. Opto-Electron. Eng. 2022, 49, 220114. [Google Scholar]
- Grier D, G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Pettit, R.M.; Ge, W.; Kumar, P.; Luntz-Martin, D.R.; Schultz, J.T.; Neukirch, L.P.; Bhattacharya, M.; Vamivakas, A.N. An optical tweezer phonon laser. Nat. Photonics 2019, 13, 402–405. [Google Scholar] [CrossRef]
- Shen, Z.; Xiang, Z.; Wang, Z.; Shen, Y.; Zhang, B. Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam–Berry phase metalens. Appl. Opt. 2021, 60, 4820–4826. [Google Scholar] [CrossRef]
- Bustamante, C.J.; Chemla, Y.R.; Liu, S.; Wang, M.D. Optical tweezers in single-molecule biophysics. Nat. Rev. Methods Prim. 2021, 1, 25. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Gong, C.F.; Liu, H.J.; Li, J.J.; Wang, Z.K. Research advances of orbital angular momentum based optical communication technology. Opto-Electron. Eng. 2020, 47, 190593. [Google Scholar]
- Neary, P.L.; Watnik, A.T.; Judd, K.P.; Lindle, J.R.; Flann, N.S. Machine learning-based signal degradation models for attenuated underwater optical communication OAM beams. Opt. Commun. 2020, 474, 126058. [Google Scholar] [CrossRef]
- Hemani, K.; Georges, K. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96. [Google Scholar]
- Willner, A.E. OAM light for communications. Opt. Photonics News 2021, 32, 34–41. [Google Scholar] [CrossRef]
- Liu, J.; Hua, Z.; Liu, C. Compact dark-field confocal microscopy based on an annular beam with orbital angular momentum. Opt. Lett. 2021, 46, 5591–5594. [Google Scholar] [CrossRef]
- He, H.; Kong, C.; Chan, K.Y.; So, W.L.; Wong, K.Y. Resolution enhancement in an extended depth of field for volumetric two-photon microscopy. Opt. Lett. 2020, 45, 3054–3057. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, W.; Tang, J.; Xu, X.; Chen, P.; Ma, C.; Zhang, W.; Wei, B.; Ming, Y.; Cui, G.; et al. Switchable Second-Harmonic Generation of Airy Beam and Airy Vortex Beam. Adv. Opt. Mater. 2020, 9, 2001776. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, Z.; Ye, Z.; Chen, Y.; Hu, X.; Wu, Y.; Zhang, Y.; Chen, P.; Hu, W.; Lu, Y.; et al. Control the orbital angular momentum in third-harmonic generation using quasi-phase-matching. Opt. Express 2018, 26, 17563–17570. [Google Scholar] [CrossRef]
- Wang, Y.; Yong, K.; Tang, S.; Zhang, R. Illumination characteristics of vortex beams in dark-field microscopic systems. Appl. Opt. 2021, 60, 2269–2274. [Google Scholar] [CrossRef]
- Guo, C.-S.; Xue, D.-M.; Han, Y.-J.; Ding, J. Optimal phase steps of multi-level spiral phase plates. Opt. Commun. 2006, 268, 235–239. [Google Scholar] [CrossRef]
- Zhan, Q. Cylindrical vector beams: From mathematical concepts to applications. Adv. Opt. Photonics 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Piccardo, M.; Ginis, V.; Forbes, A.; Mahler, S.; Friesem, A.A.; Davidson, N.; Ren, H.; Dorrah, A.H.; Capasso, F.; Dullo, F.T.; et al. Roadmap on multimode light shaping. J. Opt. 2021, 24, 13001. [Google Scholar] [CrossRef]
- Ren, Y.; Qiu, S.; Liu, T.; Liu, Z. Compound motion detection based on OAM interferometry. Nanophotonics 2022, 11, 1127–1135. [Google Scholar] [CrossRef]
- Ryabtsev, A.; Pouya, S.; Safaripour, A.; Koochesfahani, M.; Dantus, M. Fluid flow vorticity measurement using laser beams with orbital angular momentum. Opt. Express 2016, 24, 11762–11767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, D.; Zhao, H.; Ni, J.; Li, Y.; Qiu, C.-W. A phase-to-intensity strategy of angular velocity measurement based on photonic orbital angular momentum. Nanophotonics 2021, 11, 865–872. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Y. Generation and detection of structured light: A review. Front. Phys. 2021, 9, 688284. [Google Scholar] [CrossRef]
- Angelsky, O.V.; Bekshaev, A.Y.; Hanson, S.G.; Zenkova, C.Y.; Zheng, J. Structured light: Ideas and concepts. Front. Phys. 2020, 8, 144. [Google Scholar] [CrossRef]
- Forbes, A. Controlling light’s helicity at the source: Orbital angular momentum states from lasers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20150436. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wan, C.; Zhan, Q. Engineering photonic angular momentum with structured light: A review. Adv. Photonics 2021, 3, 064001. [Google Scholar] [CrossRef]
- Cao, H.; Chriki, R.; Bittner, S.; Friesem, A.A.; Davidson, N. Complex lasers with controllable coherence. Nat. Rev. Phys. 2019, 1, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light. Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Carrion-Higueras, L.; Alcusa-Saez, E.P.; Diez, A.; Andres, M.V. All-fiber laser with intracavity acousto-optic dynamic mode converter for efficient generation of radially polarized cylindrical vector beams. IEEE Photonics J. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Wei, D.; Cheng, Y.; Ni, R.; Zhang, Y.; Hu, X.; Zhu, S.; Xiao, M. Generating controllable Laguerre-Gaussian laser modes through intracavity spin-orbital angular momentum conversion of light. Phys. Rev. Appl. 2019, 11, 014038. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Miao, Y.; Fu, H.; He, H.; Tong, J.; Dong, J. High-order cylindrical vector beams with tunable topological charge up to 14 directly generated from a microchip laser with high beam quality and high efficiency. APL Photonics 2019, 4, 106106. [Google Scholar] [CrossRef]
- Ma, Y.; Lee, A.J.; Pask, H.M.; Miyamoto, K.; Omatsu, T. Geometrical Laguerre-Gaussian mode generation from an off-axis pumped Nd:GdVO4 degenerate laser. In Proceedings of the 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 21–25 June 2021. [Google Scholar]
- Li, X.; Chu, J.; Smithwick, Q.; Chu, D. Automultiscopic displays based on orbital angular momentum of light. J. Opt. 2016, 18, 85608. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.; Sheng, Q.; He, X.; Liu, J.; Shi, W.; Yao, J.; Omatsu, T. Laguerre-Gaussian beam generation via enhanced intracavity spherical aberration. Opt. Express 2021, 29, 27783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, P.; Wang, S.; Feng, G.; Zhou, S. Direct excitation of chirality controllable LG01 vortex beam in solid-state lasers by intracavity astigmatism manipulation. Laser Phys. Lett. 2019, 16, 035002. [Google Scholar] [CrossRef]
- Shen, Y.; Meng, Y.; Fu, X.; Gong, M. Wavelength-tunable Hermite–Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser. Opt. Lett. 2018, 43, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Meng, Y.; Fu, X.; Gong, M. Dual-wavelength vortex beam with high stability in a diode-pumped Yb: CaGdAlO4 laser. Laser Phys. Lett. 2018, 15, 55803. [Google Scholar] [CrossRef] [Green Version]
- Jack, B.; Yao, A.M.; Leach, J.; Romero, J.; Franke-Arnold, S.; Ireland, D.G.; Barnett, S.; Padgett, M. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces. Phys. Rev. A 2010, 81, 043844. [Google Scholar] [CrossRef] [Green Version]
- Yue, Z.; Li, J.; Li, J.; Zheng, C.; Liu, J.; Wang, G.; Xu, H.; Chen, M.; Zhang, Y.; Zhang, Y.; et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron. Sci. 2022, 1, 210014. [Google Scholar] [CrossRef]
- Lin, D.; Carpenter, J.; Feng, Y.; Jain, S.; Jung, Y.; Feng, Y.; Zervas, M.N.; Richardson, D.J. Reconfigurable structured light generation in a multicore fibre amplifier. Nat. Commun. 2020, 11, 3986. [Google Scholar] [CrossRef]
- Veinhard, M.; Bellanger, S.; Daniault, L.; Fsaifes, I.; Bourderionnet, J.; Larat, C.; Lallier, E.; Brignon, A.; Chanteloup, J.-C. Orbital angular momentum beams generation from 61 channels coherent beam combining femtosecond digital laser. Opt. Lett. 2020, 46, 25–28. [Google Scholar] [CrossRef]
- Bell, T.; Ngcobo, S. Extra-cavity amplification of the digital laser modes using nd: Yag amplifier. In Applications and Technology; Optica Publishing Group: Washington, DC, USA, 2018. [Google Scholar]
- Maurer, C.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 2010, 5, 81–101. [Google Scholar] [CrossRef]
- Forbes, A. Laser Beam Propagation: Generation and Propagation of Customized Light; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Huignard, J.P. Spatial light modulators and their applications. J Optics 1987, 18, 181. [Google Scholar] [CrossRef]
- Neff, J.A.; Athale, R.A.; Lee, S.H. Two-dimensional spatial light modulators: A tutorial. Proc. IEEE 1990, 78, 826–855. [Google Scholar] [CrossRef]
- Savage, N. Digital spatial light modulators. Nat. Photonics 2009, 3, 170–172. [Google Scholar] [CrossRef]
- Li, R.; Ren, Y.; Liu, T.; Wang, C.; Liu, Z.; Zhao, J.; Sun, R.; Wang, Z. Generating large topological charge Laguerre–Gaussian beam based on 4K phase-only spatial light modulator. Chin. Opt. Lett. 2022, 20, 120501. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Kozlova, E.S.; Savelyeva, A.A.; Stafeev, S.S. New type of vortex laser beams: Squared Laguerre-Gaussian beam. Optik 2022, 270, 169916. [Google Scholar] [CrossRef]
- Ohtake, Y.; Ando, T.; Fukuchi, N.; Matsumoto, N.; Ito, H.; Hara, T. Universal generation of higher-order multiringed Laguerre-Gaussian beams by using a spatial light modulator. Opt. Lett. 2007, 32, 1411–1413. [Google Scholar] [CrossRef]
- Carvajal, N.A.; Acevedo, C.H.; Moreno, Y.T. Generation of perfect optical vortices by using a transmission liquid crystal spatial light modulator. Int. J. Opt. 2017, 2017, 6852019. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Chang, Z.; Zhao, Y.; Wang, Y.; Zhu, X.; Zhang, P. Generation of the anomalous vortex beam by spiral axicon implemented on spatial light modulator. Front. Phys. 2022, 10, 951516. [Google Scholar] [CrossRef]
- Dudley, A.; Vasilyeu, R.; Belyi, V.; Khilo, N.; Ropot, P.; Forbes, A. Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator. Opt. Commun. 2012, 285, 5–12. [Google Scholar] [CrossRef]
- Forbes, A.; Dudley, A.; McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics 2016, 8, 200–227. [Google Scholar] [CrossRef]
- Reichelt, S.; Häussler, R.; Fütterer, G.; Leister, N.; Kato, H.; Usukura, N.; Kanbayashi, Y. Full-range, complex spatial light modulator for real-time holography. Opt. Lett. 2012, 37, 1955–1957. [Google Scholar] [CrossRef] [PubMed]
- Otte, E.; Schlickriede, C.; Alpmann, C.; Denz, C. Complex light fields enter a new dimension: Holographic modulation of polarization in addition to amplitude and phase. Complex Light Opt. Forces 2015, 9379, 937908. [Google Scholar]
- Meng, W.; Hua, Y.; Cheng, K.; Li, B.; Liu, T.; Chen, Q.; Luan, H.; Gu, M.; Fang, X. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron. Sci. 2022, 1, 220004. [Google Scholar] [CrossRef]
- Wu, Y.; Mirza, I.O.; Arce, G.R.; Prather, D.W. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system. Opt. Lett. 2011, 36, 2692–2694. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.X.; Lu, R.D.; Gong, L. Tailoring light with a digital micromirror device. Ann. Der Phys. 2015, 527, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Scholes, S.; Kara, R.; Pinnell, J.; Rodríguez-Fajardo, V.; Forbes, A. Structured light with digital micromirror devices: A guide to best practice. Opt. Eng. 2019, 59, 41202. [Google Scholar] [CrossRef]
- Wang, K.; Wang, C.; Shi, H. Polarization aberration analysis and compensation of off-axis optical system with digital micro-mirror device. Acta Opt. Sin. 2022, 42, 1611001. [Google Scholar]
- Ngcobo, S.; Litvin, I.; Burger, L.; Forbes, A. A digital laser for on-demand laser modes. Nat. Commun. 2013, 4, 2289. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, S.; Lin, Z.; Chen, Z.; Pu, J. Dual-cavity digital laser for intra-cavity mode shaping and polarization control. Opt. Express 2018, 26, 18182–18189. [Google Scholar] [CrossRef] [PubMed]
- Lukowski, M.L.; Meyer, J.T.; Hessenius, C.; Wright, E.M.; Fallahi, M. Generation of high-power spatially structured beams using vertical external cavity surface emitting lasers. Opt. Express 2017, 25, 25504–25514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Zhao, S.Z.; Li, T.; Yang, K.J.; Qiao, W.C.; Li, D.C.; Li, G.Q.; Zhang, S.Y.; Bian, J.T.; Zheng, L.H.; et al. Diode-wing-pumped electro-optically Q-switched 2 μm laser with pulse energy scaling over ten millijoules. Opt. Express 2018, 26, 17731–17738. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-S.; Chen, X.-D.; Pu, J.-X.; Lin, Z.-L.; Chen, Z.-Y. A V-folded digital laser for on-demand vortex beams by astigmatic transformation of Hermite–Gaussian modes. Chin. Phys. Lett. 2019, 36, 124203. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chang, K.-C.; Chu, S.-C. Experimental investigation of generating laser beams of on-demand lateral field distribution from digital lasers. Materials 2019, 12, 2226. [Google Scholar] [CrossRef]
- Ding, X.; Ren, Y.; Lu, R. Shaping super-Gaussian beam through digital micro-mirror device. Sci. China Ser. G Phys. Mech. Astron. 2015, 58, 1–6. [Google Scholar] [CrossRef]
- Otte, E.; Tekce, K.; Denz, C. Spatial multiplexing for tailored fully-structured light. J. Opt. 2018, 20, 105606. [Google Scholar] [CrossRef]
- Van der Jeught, S.; Dirckx, J.J. Real-time structured light profilometry: A review. Opt. Lasers Eng. 2016, 87, 18–31. [Google Scholar]
- Pan, J.; Shen, Y.; Wan, Z.; Fu, X.; Zhang, H.; Liu, Q. Index-tunable structured-light beams from a laser with an intracavity astigmatic mode converter. Phys. Rev. Appl. 2020, 14, 044048. [Google Scholar] [CrossRef]
- Schepers, F.; Bexter, T.; Hellwig, T.; Fallnich, C. Selective Hermite–Gaussian mode excitation in a laser cavity by external pump beam shaping. Appl. Phys. A 2019, 125, 75. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Y.; Wang, X.; Zhao, S.; Jie, Y.; Zhao, C. Selective generation of laser transverse modes by gain regulation with a digital micromirror device. IEEE Photonic Technol. Lett. 2022, 34, 420–423. [Google Scholar] [CrossRef]
- Xiong, G.Y.; Tang, A.; Lan, B.; Shen, F. Vortex field manipulation based on deformation mirror with continuous surface. Opto-Electron. Eng. 2022, 49, 220066. [Google Scholar]
- Chu, S.-C.; Fu, Y.-X.; Chang, K.-C.; Huang, C.-Y. Generating a geometric structure light field from a digital laser by specifying a laser cavity phase boundary with a Gaussian-convoluted target field. Opt. Express 2021, 29, 35980–35992. [Google Scholar] [CrossRef] [PubMed]
- Alpmann, C.; Bowman, R.; Woerdemann, M.; Padgett, M.; Denz, C. Mathieu beams as versatile light moulds for 3D micro particle assemblies. Opt. Express 2010, 18, 26084–26091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabusovas, A.; Vosylius, V.; Gertus, T.; Orlov, S. Vector Mathieu beam profile engineering for laser material processing applications. Procedia CIRP 2018, 74, 598–601. [Google Scholar] [CrossRef]
- Elizondo MB, A.; Rodríguez-Masegosa, R.; Gutiérrez-Vega, J.C. Generation of Mathieu-Gauss modes with an axicon-based laser resonator. Opt. Express 2008, 16, 18770–18775. [Google Scholar] [CrossRef]
- Thi, L.; Chu, S. Generation of on-demand quasi-Mathieu beams with a controlled generation of spatial spectrum of angular Mathieu-Gauss functions with a digital laser. Opt. Express 2022, 30, 5283–5293. [Google Scholar]
- Arnaud, J.A. Degenerate optical cavities. Appl. Opt. 1969, 8, 189–196. [Google Scholar] [CrossRef]
- Burkhardt, S.; Liertzer, M.; Krimer, D.O.; Rotter, S. Steady-state ab initio laser theory for fully or nearly degenerate cavity modes. Phys. Rev. A 2015, 92, 013847. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, J.A. Degenerate optical cavities. II: Effect of misalignments. Appl. Opt. 1969, 8, 1909–1917. [Google Scholar] [CrossRef]
- Cheng, Z.-D.; Liu, Z.-D.; Luo, X.-W.; Zhou, Z.-W.; Wang, J.; Li, Q.; Wang, Y.-T.; Tang, J.-S.; Xu, J.-S.; Li, C.-F.; et al. Degenerate cavity supporting more than 31 Laguerre–Gaussian modes. Opt. Lett. 2017, 42, 2042–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.-D.; Liu, Z.-H.; Li, Q.; Zhou, Z.-W.; Xu, J.-S.; Li, C.-F.; Guo, G.-C. Flexible degenerate cavity with ellipsoidal mirrors. Opt. Lett. 2019, 44, 5254–5257. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, H.-Q.; Liao, Y.-W.; Liu, Z.-H.; Zhou, Z.-W.; Zhou, X.-X.; Xu, J.-S.; Han, Y.-J.; Li, C.-F.; Guo, G.-C. Topological band structure via twisted photons in a degenerate cavity. Nat. Commun. 2022, 13, 2040. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.H.; Lin, Y.C.; Chen, Y.F.; Huang, K.F. Observation and analysis of coherent optical waves emitted from large-Fresnel number degenerate cavities. Opt. Express 2009, 17, 3007–3015. [Google Scholar] [CrossRef] [PubMed]
- Rumala, Y.S. Propagation of structured light beams after multiple reflections in a spiral phase plate. Opt. Eng. 2015, 54, 111306. [Google Scholar] [CrossRef]
- Chriki, R.; Barach, G.; Tradosnky, C.; Smartsev, S.; Pal, V.; Friesem, A.A.; Davidson, N. Rapid and efficient formation of propagation invariant shaped laser beams. Opt. Express 2018, 26, 4431–4439. [Google Scholar] [CrossRef]
- Tradonsky, C.; Mahler, S.; Cai, G.; Pal, V.; Chriki, R.; Friesem, A.A.; Davidson, N. High-resolution digital spatial control of a highly multimode laser. Optica 2021, 8, 880–884. [Google Scholar] [CrossRef]
- Lian, Y.; Yu, Y.; Han, S.; Luan, N.; Wang, Y.; Lu, Z. OAM beams generation technology in optical fiber: A review. IEEE Sensors J. 2022, 22, 3828–3843. [Google Scholar] [CrossRef]
- Wang, L.; Vaity, P.; Ung, B.; Messaddeq, Y.; Rusch, L.; LaRochelle, S. Characterization of OAM fibers using fiber Bragg gratings. Opt. Express 2014, 22, 15653–15661. [Google Scholar] [CrossRef]
- Mizushima, R.; Detani, T.; Zhu, C.; Wang, P.; Zhao, H.; Li, H. The superimposed multi-channel helical long-period fiber grating and its application to multi-channel OAM mode generator. J. Light. Technol. 2021, 39, 3269–3275. [Google Scholar] [CrossRef]
- Detani, T.; Zhao, H.; Wang, P.; Suzuki, T.; Li, H. Simultaneous generation of the second- and third-order OAM modes by using a high-order helical long-period fiber grating. Opt. Lett. 2021, 46, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Ai, Q.; Chen, X.; Tian, M.; Yan, B.-B.; Zhang, Y.; Song, F.-J.; Chen, G.-X.; Sang, X.-Z.; Wang, Y.-Q.; Xiao, F.; et al. Demonstration of multi-wavelength tunable fiber lasers based on a digital micromirror device processor. Appl. Opt. 2015, 54, 603–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Yan, B.-B.; Song, F.-J.; Wang, Y.-Q.; Xiao, F.; Alameh, K. Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers. Appl. Opt. 2012, 51, 7214–7220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, C.; Yu, S.; Cai, S.; Lan, M.; Gu, W. Fiber laser for on-demand mode generation in 1550 nm band. Photonics Res. 2017, 5, 256–260. [Google Scholar] [CrossRef]
- Hart, J.L.; Lang, A.C.; Leff, A.C.; Longo, P.; Trevor, C.; Twesten, R.D.; Taheri, M.L. Direct detection electron energy-loss spectroscopy: A method to push the limits of resolution and sensitivity. Sci. Rep. 2017, 7, 8243. [Google Scholar] [CrossRef] [Green Version]
- Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2015, 50, 46–111. [Google Scholar] [CrossRef]
- Zhou, N.; Liu, J.; Wang, J. Reconfigurable and tunable twisted light laser. Sci. Rep. 2018, 8, 11394. [Google Scholar] [CrossRef] [Green Version]
- Rosales-Guzmán, C.; Bhebhe, N.; Forbes, A. Simultaneous generation of multiple vector beams on a single SLM. Opt. Express 2017, 25, 25697–25706. [Google Scholar] [CrossRef]
- Lin, D.; Carpenter, J.; Feng, Y.; Jung, Y.; Alam, S.-U.; Richardson, D.J. High-power, electronically controlled source of user-defined vortex and vector light beams based on a few-mode fiber amplifier. Photonics Res. 2021, 9, 856. [Google Scholar] [CrossRef]
- Bukhari, S.S.; Vardaxoglou, J.; Whittow, W. A metasurfaces review: Definitions and applications. Appl. Sci. 2019, 9, 2727. [Google Scholar] [CrossRef] [Green Version]
- Cortés, E.; Wendisch, F.J.; Sortino, L.; Mancini, A.; Ezendam, S.; Saris, S.; Menezes, L.D.S.; Tittl, A.; Ren, H.; Maier, S.A. Optical metasurfaces for energy conversion. Chem. Rev. 2022, 122, 15082–15176. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, J.; Zhang, J.; Shao, L.; Zhang, C.; Wang, X.; Jin, R.; Zhu, W. Shaping electromagnetic fields with irregular metasurface. Adv. Mater. Technol. 2022, 7, 2200035. [Google Scholar] [CrossRef]
- Kamali, S.M.; Arbabi, E.; Arbabi, A.; Horie, Y.; Faraon, A. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev. 2016, 10, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-T.; Taylor, A.J.; Yu, N. A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maguid, E.; Chriki, R.; Yannai, M.; Kleiner, V.; Hasman, E.; Friesem, A.A.; Davidson, N. Topologically controlled intracavity laser modes based on pancharatnam-berry phase. ACS Photonics 2018, 5, 1817–1821. [Google Scholar] [CrossRef]
- Chriki, R.; Maguid, E.; Tradonsky, C.; Kleiner, V.; Friesem, A.A.; Davidson, N.; Hasman, E. Spin-controlled twisted laser beams: Intra-cavity multi-tasking geometric phase metasurfaces. Opt. Express 2018, 26, 905–916. [Google Scholar] [CrossRef]
- Merola, F.; Coppola, S.; Vespini, V.; Grilli, S.; Ferraro, P. Characterization of Bessel beams generated by polymeric microaxicons. Meas. Sci. Technol. 2012, 23, 065204. [Google Scholar] [CrossRef]
- Marston, P.L. Scattering of a Bessel beam by a sphere: II. Helicoidal case and spherical shell example. J. Acoust. Soc. Am. 2008, 124, 2905–2910. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, W.; Qian, M.; Cheng, Q.; Liu, X. A flat acoustic lens to generate a Bessel-like beam. Ultrasonics 2017, 80, 66–71. [Google Scholar] [CrossRef]
- Monk, S.; Arlt, J.; Robertson, D.; Courtial, J.; Padgett, M. The generation of Bessel beams at millimetre-wave frequencies by use of an axicon. Opt. Commun. 1999, 170, 213–215. [Google Scholar] [CrossRef]
- Zhou, N.; Wang, J. Metasurface-assisted orbital angular momentum carrying Bessel-Gaussian Laser: Proposal and simulation. Sci. Rep. 2018, 8, 8038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayuso, D.; Neufeld, O.; Ordonez, A.F.; Decleva, P.; Lerner, G.; Cohen, O.; Ivanov, M.; Smirnova, O. Synthetic chiral light for efficient control of chiral light–matter interaction. Nat. Photonics 2019, 13, 866–871. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, J.L.; Wade, J.; Brandt, J.R.; Shi, X.; Penfold, T.J.; Fuchter, M.J. Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules. Chem. Sci. 2021, 12, 8589–8602. [Google Scholar] [CrossRef] [PubMed]
- Sroor, H.; Huang, Y.-W.; Sephton, B.; Naidoo, D.; Vallés, A.; Ginis, V.; Qiu, C.-W.; Ambrosio, A.; Capasso, F.; Forbes, A. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics 2020, 14, 498–503. [Google Scholar] [CrossRef]
- Woerdemann, M.; Alpmann, C.; Esseling, M.; Denz, C. Advanced optical trapping by complex beam shaping. Laser Photonics Rev. 2013, 7, 839–854. [Google Scholar] [CrossRef]
- Hou, T.; Zhi, D.; Tao, R.; Ma, Y.; Zhou, P.; Liu, Z. Spatially-distributed orbital angular momentum beam array generation based on greedy algorithms and coherent combining technology. Opt. Express 2018, 26, 14945–14958. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, B.; Dong, Y.; Wang, S.; Zhu, Z.; Bo, F.; Li, X. Generation of equilateral-polygon-like flat-top focus by tightly focusing radially polarized beams superposed with off-axis vortex arrays. Opt. Express 2017, 25, 26844–26852. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, M.; Battipede, F.; Lugiato, L.A.; Penna, V.; Prati, F.; Tamm, C.; Weiss, C.O. Transverse laser patterns. I. Phase singularity crystals. Phys. Rev. A 1991, 43, 5090–5113. [Google Scholar] [CrossRef]
- Mondal, P.; Kumar, M.; Tiwari, P.; Srivastava, A.K.; Chakera, J.A.; Naik, P.A. Experimental realization of Talbot array illumination for a 2-dimensional phase grating. J. Appl. Phys. 2016, 120, 153103. [Google Scholar] [CrossRef]
- Piccardo, M.; de Oliveira, M.; Toma, A.; Aglieri, V.; Forbes, A.; Ambrosio, A. Vortex laser arrays with topological charge control and self-healing of defects. Nat. Photonics 2022, 16, 359–365. [Google Scholar] [CrossRef]
- Wang, C.; Gui, L.; Qiu, K.; Cai, Y.; Gan, Y.; He, F.; Xu, K. A metasurface-assisted fiber laser enables generation of high-power and high-purity structured beams. In Proceedings of the Asia Communications and Photonics Conference and International Conference on Information Photonics and Optical Communications, Beijing, China, 24–27 October 2020. [Google Scholar]
- Lee, T.P.; Zah, C. Wavelength-tunable and single-frequency semiconductor lasers for photonic communications networks. IEEE Commun. Mag. 1989, 27, 42–52. [Google Scholar] [CrossRef]
- Trotta, R.; Martín-Sánchez, J.; Wildmann, J.S.; Piredda, G.; Reindl, M.; Schimpf, C.; Zallo, E.; Stroj, S.; Edlinger, J.; Rastelli, A. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 2016, 7, 10375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Feng, Q.; Zhu, Y.; Ji, S.; Xiao, B.; Xu, H.; Li, W.; Cai, Z. Diode-pumped wavelength-switchable visible Pr3+:YLF laser and vortex laser around 670 nm. Opto-Electron. Adv. 2021, 4, 210006. [Google Scholar] [CrossRef]
- Gui, L.; Wang, C.; Ding, F.; Chen, H.; Xiao, X.; Bozhevolnyi, S.I.; Zhang, X.; Xu, K. 60-nm-span wavelength-tunable vortex fiber laser with intracavity plasmon metasurfaces. arXiv 2022, arXiv:2207.05264. [Google Scholar]
- Li, H.; Phillips, D.B.; Wang, X.; Ho, Y.L.D.; Chen, L.; Zhou, X.; Zhu, J.; Yu, S.; Cai, X. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2015, 2, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro RS, R.; Dahal, P.; Guerreiro, A.; Jorge, P.; Viegas, J. Optical fibers as beam shapers: From Gaussian beams to optical vortices. Opt. Lett. 2016, 41, 2137–2140. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Wang, J.; Strain, M.J.; Johnson-Morris, B.; Zhu, J.; Sorel, M.; O’Brien, J.L.; Thompson, M.G.; Yu, S. Integrated compact optical vortex beam emitters. Science 2012, 338, 363–366. [Google Scholar] [CrossRef]
- Miao, P.; Zhang, Z.; Sun, J.; Walasik, W.; Longhi, S.; Litchinitser, N.M.; Feng, L. Orbital angular momentum microlaser. Science 2016, 353, 464–467. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Qiao, X.; Midya, B.; Liu, K.; Sun, J.; Wu, T.; Liu, W.; Agarwal, R.; Jornet, J.M.; Longhi, S.; et al. Tunable topological charge vortex microlaser. Science 2020, 368, 760–763. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, C.; Xiong, B.; Wang, J.; Hao, Z.; Wang, L.; Han, Y.; Li, H.; Luo, Y.; Xiao, Y.; et al. An InP-based vortex beam emitter with monolithically integrated laser. Nat. Commun. 2018, 9, 2652. [Google Scholar] [CrossRef] [Green Version]
- Hayenga, W.E.; Parto, M.; Ren, J.; Wu, F.O.; Hokmabadi, M.P.; Wolff, C.; El-Ganainy, R.; Mortensen, N.A.; Christodoulides, D.N.; Khajavikhan, M. Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points. ACS Photonics 2019, 6, 1895–1901. [Google Scholar] [CrossRef] [Green Version]
- Spektor, G.; Prinz, E.; Hartelt, M.; Mahro, A.-K.; Aeschlimann, M.; Orenstein, M. Orbital angular momentum multiplication in plasmonic vortex cavities. Sci. Adv. 2021, 7, eabg5571. [Google Scholar] [CrossRef] [PubMed]
- Kress, S.J.; Antolinez, F.V.; Richner, P.; Jayanti, S.V.; Kim, D.K.; Prins, F.; Riedinger, A.; Fischer, M.P.; Meyer, S.; McPeak, K.M.; et al. Wedge waveguides and resonators for quantum plasmonics. Nano Lett. 2015, 15, 626–6275. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Wang, S. Structured Light Laser Based on Intra-Cavity Modulation. Photonics 2023, 10, 1. https://doi.org/10.3390/photonics10010001
Guo P, Wang S. Structured Light Laser Based on Intra-Cavity Modulation. Photonics. 2023; 10(1):1. https://doi.org/10.3390/photonics10010001
Chicago/Turabian StyleGuo, Pan, and Sha Wang. 2023. "Structured Light Laser Based on Intra-Cavity Modulation" Photonics 10, no. 1: 1. https://doi.org/10.3390/photonics10010001
APA StyleGuo, P., & Wang, S. (2023). Structured Light Laser Based on Intra-Cavity Modulation. Photonics, 10(1), 1. https://doi.org/10.3390/photonics10010001