Perfect Nonradiating Modes in Dielectric Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Result
3.1. TM Perfect Nonradiating Modes in Spherical Particles
3.1.1. Analytical Solutions
3.1.2. Manifestation of Perfect Nonradiating Modes in Scattering Experiments
3.2. TM Perfect Nonradiating Modes in Spheroidall Particles
3.2.1. Analytical Solutions
3.2.2. Manifestation of TM Perfect Nonradiating Modes in Scattering Experiments
3.3. TE Perfect Nonradiating Modes in Spheroidall Particles
3.3.1. Analytical Solutions
3.3.2. Manifestation of TE Perfect Nonradiating Modes in Scattering Experiments
3.4. TM Perfect Nonradiating Modes in Cylindrical Particles
4. Discussion
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Theory of Perfect Nonradiating Modes in Dielectric Sphere
Appendix B
Appendix B.1. Theory of Perfect Nonradiating Modes in Dielectric Spheroids
Appendix B.2. TM Polarization, Non-Magnetic Case
- Only modes with the same parity interact with each other;
- For each mode, interaction is essential only with the nearest modes of the same parity, 2k⇔2(k ± 1); 2k + 1⇔2(k ± 1) + 1.
Appendix B.3. TE Polarization, Non-Magnetic Case
References
- Novotny, L.; Van Hulst, N. Antennas for light. Nat. Photon. 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Biagioni, P.; Huang, J.S.; Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 2012, 75, 024402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiguntseva, E.; Koshelev, K.; Furasova, A.; Tonkaev, P.; Mikhailovskii, V.; Ushakova, E.V.; Baranov, D.G.; Shegai, T.; Zakhidov, A.A.; Kivshar, Y.; et al. Room-Temperature Lasing from Mie-Resonant Nonplasmonic Nanoparticles. ACS Nano 2020, 14, 8149. [Google Scholar] [CrossRef] [PubMed]
- Mylnikov, V.; Ha, S.T.; Pan, Z.; Valuckas, V.; Paniagua-Dominguez, R.; Demir, H.V.; Kuznetsov, A.I. Lasing Action in Single Subwavelength Particles Supporting Supercavity Modes. ACS Nano 2020, 14, 7338. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Zhang, Z.; Qin, F.; Xu, Y. Invisible Mie scatterer. Opt. Lett. 2021, 46, 5248–5251. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Guo, Z.; Zhao, X.; Luo, M.; Li, Y.; Wu, X. Ultrahigh Q-Guided Resonance Sensor Empowered by Near Merging Bound States in the Continuum. Photonics 2022, 9, 852. [Google Scholar] [CrossRef]
- Barreda, A.I.; Sanz, J.M.; Gonzalez, F. Using linear polarization for sensing and sizing dielectric nanoparticles. Opt. Express 2015, 23, 9157. [Google Scholar] [CrossRef]
- García-Cámara, B.; Gómez-Medina, R.; Sáenz, J.J.; Sepúlveda, B. Sensing with magnetic dipolar resonances in semiconductor nanospheres. Opt. Express 2013, 23, 23007. [Google Scholar] [CrossRef] [Green Version]
- Barreda, A.; Vitale, F.; Minovich, A.; Ronning, C.; Staude, I. Applications of Hybrid Metal-Dielectric Nanostructures: State of the Art. Adv. Photonics Res. 2022, 3, 2100286. [Google Scholar] [CrossRef]
- Grinblat, G.; Li, Y.; Nielsen, M.P.; Oulton, R.F.; Maier, S.A. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano 2017, 11, 953–960. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Lee, J.; Chua, S.-L.; Johnson, S.G.; Joannopoulos, J.D.; Soljačic, M. Observation of trapped light within the radiation continuum. Nature 2013, 499, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.; Zhen, B.; Stone, A.; Joannopoulos, J.D.; Soljačic, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef] [Green Version]
- Koshelev, K.; Favraud, G.; Bogdanov, A.; Kivshar, Y.; Fratalocchi, A. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics 2019, 8, 725. [Google Scholar] [CrossRef]
- Carletti, L.; Koshelev, K.; de Angelis, C.; Kivshar, Y. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett. 2018, 121, 33903. [Google Scholar] [CrossRef] [Green Version]
- Rybin, M.V.; Koshelev, K.L.; Sadrieva, Z.F.; Samusev, K.B.; Bogdanov, A.A.; Limonov, M.F.; Kivshar, Y.S. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 2017, 119, 243901. [Google Scholar] [CrossRef] [Green Version]
- Odit, M.; Koshelev, K.; Gladyshev, S.; Ladutenko, K.; Kivshar, Y.; Bogdanov, A. Observation of supercavity modes in subwavelength dielectric resonators. Adv. Mater. 2021, 33, 2003804. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B. Electromagnetic interaction with parity violation. JETP 1957, 6, 1184. [Google Scholar]
- McLean, J.S.; Foltz, H. The Relationship between Cartesian Multipoles and Spherical Wavefunction Expansions with Application to Wireless Power Transfer. In Proceedings of the Antenna Measurement Techniques Association Symposium (AMTA), Newport, RI, USA, 2–5 November 2020; pp. 1–6. [Google Scholar]
- Radescu, E., Jr.; Vaman, G. Cartesian Multipole Expansions and Tensorial Identities. Prog. Electromagn. Res. B 2012, 36, 89. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Bozhevolnyi, S.I. Nonradiating anapole states in nanophotonics: From fundamentals to applications. Nanotechnology 2019, 30, 204001. [Google Scholar] [CrossRef]
- Manna, U.; Sugimoto, H.; Eggena, D.; Coe, B.; Wang, R.; Biswas, M.; Fujii, M. Selective excitation and enhancement of multipolar resonances in dielectric nanospheres using cylindrical vector beams. J. Appl. Phys. 2020, 127, 033101. [Google Scholar] [CrossRef]
- Parker, J.A.; Sugimoto, H.; Coe, B.; Eggena, D.; Fujii, M.; Scherer, N.F.; Gray, S.K.; Manna, U. Excitation of Nonradiating Anapoles in Dielectric Nanospheres. Phys. Rev. Lett. 2020, 124, 097402. [Google Scholar] [CrossRef] [PubMed]
- Luk’yanchuk, B.; Paniagua-Domínguez, R.; Kuznetsov, A.I.; Miroshnichenko, A.E.; Kivshar, Y.S. Hybrid anapole modes of high-index dielectric nanoparticles. Phys. Rev. A. 2017, 95, 063820. [Google Scholar] [CrossRef]
- Wei, L.; Xi, Z.; Bhattacharya, N.; Urbach, H.P. Excitation of the radiationless anapole mode. Optica 2016, 3, 799. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Xu, Y.; Ouyang, X.; Xian, M.; Cao, Y.; Chen, K.; Li, X. Cylindrical vector beams reveal radiationless anapole condition in a resonant state. Opto-Electron. Adv. 2021, 5, 210076. [Google Scholar] [CrossRef]
- Diaz-Escobar, E.; Bauer, T.; Pinilla-Cienfuegos, E.; Barreda, Á.I.; Griol, A.; Kuipers, L.; Martínez, A. Radiationless anapole states in on-chip photonics. Light Sci. Appl. 2021, 10, 204. [Google Scholar] [CrossRef]
- Klimov, V. Manifestation of extremely high-Q pseudo-modes in scattering of a Bessel light beam by a sphere. Opt. Lett. 2020, 45, 4300. [Google Scholar] [CrossRef]
- Bohren, C.; Huffmann, D. Absorption and Scattering of Light by Small Particles; John Wiley: New York, NY, USA, 1983. [Google Scholar]
- von Neumann, J.; Wigner, E.P. Uber merkwiirdige diskrete Eigenwerte. Phys. Z. 1929, 30, 465. [Google Scholar]
- Arai, M.; Uchiyama, J. On the von Neumann and Wigner Potentials. J. Differ. Equ. 1999, 157, 348. [Google Scholar] [CrossRef] [Green Version]
- Schinke, C.; Peest, P.C.; Schmidt, J.; Brendel1, R.; Bothe, K.; Vogt, M.R.; Kröger, I.; Winter, S.; Schirmacher, A.; Lim, S.; et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv. 2015, 5, 67168. [Google Scholar] [CrossRef] [Green Version]
- Weiting, F.; Yixun, Y. Temperature effects on the refractive index of lead telluride and zinc selenide. Infrared Phys. 1990, 30, 371. [Google Scholar] [CrossRef]
- Krishnamoorthy, H.N.S.; Adamo, G.; Yin, J.; Savinov, V.; Zheludev, N.I.; Soci, C. Infrared dielectric metamaterials from high refractive index chalcogenides. Nat. Comm. 2020, 11, 1692. [Google Scholar]
- Meixner, J.; Schäfke, F.W. Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf Physikalische und Technische Probleme; Grundlehren der mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1954; Volume 71, 432p. [Google Scholar]
- Li, L.-W.; Kang, X.-K.; Leong, M.-S. Spheroidal Wave Functions in Electromagnetic Theory; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- van Bladel, J. On the resonances of a dielectric resonator of very high permittivity. IEEE Trans. Microw. Theory Tech. 1975, MTT-23, 199–208. [Google Scholar] [CrossRef]
- Klimov, V.V.; Guzatov, D.V. Perfect Nonradiating Modes in Dielectric Nanofiber with Elliptical Cross-Section. Available online: https://arxiv.org/abs/2204.13327v2 (accessed on 2 May 2022).
- Guzatov, D.V.; Klimov, V.V. The influence of chiral spherical particles on the radiation of optically active molecules. New J. Phys. 2012, 14, 123009. [Google Scholar] [CrossRef]
- Stratton, J.A. Electromagnetic Theory; McGraw-Hill Book Company: New York, NY, USA; London, UK, 1941; 557p. [Google Scholar]
Wavelength, nm | Si Permittivity | QPTM101 | QTM101 |
---|---|---|---|
500 | 18.3932 + 0.416393 i | 42 | 32 |
600 | 15.4524 + 0.145612 i | 101 | 36 |
800 | 13.4615 + 0.0386382 i | 327 | 32 |
1000 | 12.7806 + 0.00350493 i | 3402 | 30 |
1200 | 12.4045 + 9.79398 × 10−7 i | 1.2 × 107 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimov, V. Perfect Nonradiating Modes in Dielectric Nanoparticles. Photonics 2022, 9, 1005. https://doi.org/10.3390/photonics9121005
Klimov V. Perfect Nonradiating Modes in Dielectric Nanoparticles. Photonics. 2022; 9(12):1005. https://doi.org/10.3390/photonics9121005
Chicago/Turabian StyleKlimov, Vasily. 2022. "Perfect Nonradiating Modes in Dielectric Nanoparticles" Photonics 9, no. 12: 1005. https://doi.org/10.3390/photonics9121005
APA StyleKlimov, V. (2022). Perfect Nonradiating Modes in Dielectric Nanoparticles. Photonics, 9(12), 1005. https://doi.org/10.3390/photonics9121005