Achromatic Flat Metasurface Fiber Couplers within Telecom Bands
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Structure of This Designed Metasurface Fiber Coupler
2.2. The Design Process of the Metalens
3. Results and Discussions
3.1. The Design of Single-Band Fiber Coupler
3.2. The Design of Broad-Band Fiber Coupler
3.3. The Optical Performance of Achromatic Lens
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Senior, J.M.; Jamro, M.Y. Optical Fiber Communications: Principles and Practice; Financial Times/Prentice Hall: Harlow, UK, 2009; pp. xviii+558. [Google Scholar]
- Gai, L.; Li, J.; Zhao, Y. Preparation and application of microfiber resonant ring sensors: A review. Opt. Laser Technol. 2017, 89, 126–136. [Google Scholar] [CrossRef]
- Marin-Palomo, P.; Kemal, J.N.; Karpov, M.; Kordts, A.; Pfeifle, J.; Pfeiffer, M.H.P.; Trocha, P.; Wolf, S.; Brasch, V.; Anderson, M.H.; et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 2017, 546, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Essiambre, R.-J.; Tkach, R.W. Capacity Trends and Limits of Optical Communication Networks. Proc. IEEE 2012, 100, 1035–1055. [Google Scholar] [CrossRef]
- Richardson, D.J.; Fini, J.M.; Nelson, L.E. Space-division multiplexing in optical fibres. Nat. Photonics 2013, 7, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Chong, A.; Buckley, J.; Renninger, W.; Wise, F. All-normal-dispersion femtosecond fiber laser. Opt. Express 2006, 14, 10095–10100. [Google Scholar] [CrossRef]
- Park, B.H.; Pierce, M.C.; Cense, B.; Yun, S.-H.; Mujat, M.; Tearney, G.J.; Bouma, B.E.; de Boer, J. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 13 µm. Opt. Express 2005, 13, 3931–3944. [Google Scholar] [CrossRef] [Green Version]
- Pahlevaninezhad, H.; Khorasaninejad, M.; Huang, Y.-W.; Shi, Z.; Hariri, L.P.; Adams, D.C.; Ding, V.; Zhu, A.; Qiu, C.-W.; Capasso, F.; et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 2018, 12, 540–547. [Google Scholar] [CrossRef]
- Shin, J.; Tran, D.N.; Stroud, J.R.; Chin, S.; Tran, T.D.; Foster, M.A. A minimally invasive lens-free computational microendoscope. Sci. Adv. 2019, 5, eaaw5595. [Google Scholar] [CrossRef] [Green Version]
- Shahmoon, A.; Aharon, S.; Kruchik, O.; Hohmann, M.; Slovin, H.; Douplik, A.; Zalevsky, Z. In vivo minimally invasive interstitial multi-functional microendoscopy. Sci. Rep. 2013, 3, 1805. [Google Scholar] [CrossRef] [Green Version]
- Passaro, V.M.N.; Cuccovillo, A.; Vaiani, L.; De Carlo, M.; Campanella, C.E. Gyroscope Technology and Applications: A Review in the Industrial Perspective. Sensors 2017, 17, 2284. [Google Scholar] [CrossRef]
- Barrias, A.; Casas, J.R.; Villalba, S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 2016, 16, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, X.; Chen, L. Recent Progress in Distributed Fiber Optic Sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, T.L.; Eckstein, D.; McKinley, B.; Boswell, L.F.; Sun, T.; Grattan, K.T.V. Fibre-optic sensor for the monitoring of moisture ingress and porosity of concrete. In Proceedings of the 17th International Conference on Optical Fibre Sensors, Brugge, Belgium, 23–27 May 2005; pp. 491–494. [Google Scholar]
- Ansari, F. Structural health monitoring with fiber optic sensors. Front. Mech. Eng. China 2009, 4, 103–110. [Google Scholar] [CrossRef]
- Bednarska, K.; Sobotka, P.; Woliński, T.R.; Zakręcka, O.; Pomianek, W.; Nocoń, A.; Lesiak, P. Hybrid Fiber Optic Sensor Systems in Structural Health Monitoring in Aircraft Structures. Materials 2020, 13, 2249. [Google Scholar] [CrossRef]
- Constable, A.; Kim, J.; Mervis, J.; Zarinetchi, F.; Prentiss, M. Demonstration of a fiber-optical light-force trap. Opt. Lett. 1993, 18, 1867–1869. [Google Scholar] [CrossRef]
- Asadollahbaik, A.; Thiele, S.; Weber, K.; Kumar, A.; Drozella, J.; Sterl, F.; Herkommer, A.M.; Giessen, H.; Fick, J. Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses. Acs Photonics 2019, 7, 88–97. [Google Scholar] [CrossRef]
- Sollapur, R.; Kartashov, D.; Zürch, M.; Hoffmann, A.; Grigorova, T.; Sauer, G.; Hartung, A.; Schwuchow, A.; Bierlich, J.; Kobelke, J.; et al. Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers. Light. Sci. Appl. 2017, 6, e17124. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, X.; Li, S.; An, G.-W.; Cheng, T. Magnetic Field Sensing Based on SPR Optical Fiber Sensor Interacting With Magnetic Fluid. IEEE Trans. Instrum. Meas. 2018, 68, 234–239. [Google Scholar] [CrossRef]
- Ghasemi, S.; Hantehzadeh, M.; Sabbaghzadeh, J.; Dorranian, D.; Vatani, V.; Babazadeh, A.; Hejaz, K.; Hemmati, A.; Lafouti, M. Designing a plano-convex aspheric lens for fiber optics collimator. Opt. Lasers Eng. 2012, 50, 293–296. [Google Scholar] [CrossRef]
- Chandrappan, J.; Jing, Z.; Mohan, R.V.; Gomez, P.O.; Aung, T.A.; Yongfei, X.; Ramana, P.V.; Lau, J.H.; Kwong, D.L. Optical Coupling Methods for Cost-Effective Polymer Optical Fiber Communication. IEEE Trans. Compon. Packag. Technol. 2009, 32, 593–599. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Z.; Wang, Z.; Hou, J. Monolithic fiber end cap collimator for high-power free-space fiber–fiber coupling. Appl. Opt. 2016, 55, 4001–4004. [Google Scholar] [CrossRef] [PubMed]
- Laskin, A.; Shealy, D. Building achromatic refractive beam shapers. In Proceedings of the Conference on Laser Beam Shaping XV, San Diego, CA, USA, 17–19 August 2014; pp. 115–125. [Google Scholar]
- Li, L.; Yi, A.Y. An affordable injection-molded precision hybrid glass–polymer achromatic lens. Int. J. Adv. Manuf. Technol. 2013, 69, 1461–1467. [Google Scholar] [CrossRef]
- Plidschun, M.; Ren, H.; Kim, J.; Förster, R.; Maier, S.A.; Schmidt, M.A. Ultrahigh numerical aperture meta-fibre for flexible optical trapping. Light. Sci. Appl. 2021, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Xiong, Y.; Xu, F.; Chen, Z. Metasurface around the Side Surface of an Optical Fiber for Light Focusing. Opt. Express 2022, 30, 40916–40924. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shi, Y. Metamaterial-Based Maxwell’s Fisheye Lens for Multimode Waveguide Crossing. Laser Photonics Rev. 2018, 12, 1800094. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Wang, H.; Sun, L.; Su, Y. Ultra-Broadband Mode Size Converter Using On-Chip Metamaterial-Based Luneburg Lens. ACS Photonics 2020, 8, 202–208. [Google Scholar] [CrossRef]
- Ren, H.; Jang, J.; Li, C.; Aigner, A.; Plidschun, M.; Kim, J.; Rho, J.; Schmidt, M.A.; Maier, S.A. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun. 2022, 13, 4183. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Kácik, D.; Tatar, P.; Martinček, I. Measurement of PDMS refractive index by low-coherence interferometry. In Proceedings of the 2014 ELEKTRO, Rajecke Teplice, Slovakia, 19–20 May 2014; pp. 662–665. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, R.; Xue, X.; Jiang, X.; Chen, X.; Chui, H.-C. Achromatic Flat Metasurface Fiber Couplers within Telecom Bands. Photonics 2023, 10, 28. https://doi.org/10.3390/photonics10010028
Li J, Li R, Xue X, Jiang X, Chen X, Chui H-C. Achromatic Flat Metasurface Fiber Couplers within Telecom Bands. Photonics. 2023; 10(1):28. https://doi.org/10.3390/photonics10010028
Chicago/Turabian StyleLi, Jiayi, Rui Li, Xiaojun Xue, Xiao Jiang, Xiaoming Chen, and Hsiang-Chen Chui. 2023. "Achromatic Flat Metasurface Fiber Couplers within Telecom Bands" Photonics 10, no. 1: 28. https://doi.org/10.3390/photonics10010028
APA StyleLi, J., Li, R., Xue, X., Jiang, X., Chen, X., & Chui, H. -C. (2023). Achromatic Flat Metasurface Fiber Couplers within Telecom Bands. Photonics, 10(1), 28. https://doi.org/10.3390/photonics10010028