High-Spatial-Resolution Dynamic Strain Measurement Based on Brillouin Optical Correlation-Domain Sensors
Abstract
:1. Introduction
2. Basic Principle
2.1. Brillouin Gain Spectrum and Brillouin Frequency Shift
- The average number of signals, Nave. Multiple averages can improve the signal-to-noise ratio (SNR) of sensing data.
- The limited frequency switching time, Tswitch. When the BGS is reconstructed from the sweeping frequency, the switching time of the optical frequency is usually determined by the frequency-switching time of the microwave signal, which would delay the acquisition time to milliseconds or even slower.
- The number of sweeps, Nf. Large strain or temperature ranges require extended sweep frequency ranges (fspan), and higher accuracy requires a smaller sweep interval (Δfstep). The number of sweeps is
2.2. Dynamic Strain Sensing Method
3. Dynamic Strain Sensing Based on BOCDA
3.1. FS-BOCDA
3.2. SA-BOCDA
4. Dynamic Strain Sensing Based on BOCDR
4.1. FS-BOCDR
4.2. SA-BOCDR
5. Discussion
- In FS-BOCDA and FS-BOCDR systems, the VCO is introduced to obtain the BGS at high speed, and the sampling rate is increased to tens of kHz, where BEF is introduced to suppress the system noise and improve the dynamic strain range. Furthermore, the LIA-free scheme based on data difference eliminates the limitation of the LIA on measurement speed and achieves a 200 kHz sampling rate. Therefore, convexity extraction algorithms, PCA and SVM algorithms, NNs, and CS algorithms are also proposed to improve the SNR, sensing speed, dynamic strain range, and effective repetition rate without additional hardware complexity.
- In SA-BOCDA and SA-BOCDR systems, the strain is demodulated by the Brillouin signal power at a fixed frequency, which avoids the time-consuming sweep process in principle. The SA sine-FM BOCDA system has been proven. Then, the chaotic laser was introduced by our group to expand the linear range of the BGS, combined with single-SA, dual-SA, and multi-SA technologies to achieve high spatial resolution, high precision, and a large dynamic range. The proof-of-concept of SA-BOCDR has been proposed to achieve distributed strain measurement, but not dynamic strain demodulation.
- The contradiction between the sensing range and spatial resolution. In the Brillouin correlation-domain system, the SR and sensing range of the sine-FM system can be expressed as shown in Equations (9) and (10), which in the PM system can be expressed as Equations (11) and (12), respectively. Here, Vg is the group velocity of light in the fiber, ΔνB is the FWHM of the gain spectrum, ƒm is the modulation frequency, Δƒ is the modulation amplitude, and Tb and M are the code width and code length of the phase-coded sequence, respectively. It is clear that in sine-FM and PM systems, the SR will deteriorate with the increase in the sensing range, limiting its further expansion. At the same time, the width of the periodic correlation peak will change slightly during the localization process, which leads to the SR worsening in principle. It is noticeable that the SR and sensing range of the chaos-based system are expressed as Equations (13) and (14), respectively, where Δτ and τd are the FWHM and delay period of the light source correlation peak, respectively. The SR is only dependent on the chaos bandwidth, which can overcome the trade-off problem between long sensing range and high SR. The low-noise phase-chaos laser can improve the SNR to extend the sensing range.
- The contradiction between the dynamic strain range and frequency. In Brillouin correlation-domain systems, the signal acquisition speed is limited by the use of the low-speed MFS and LIA, and the dynamic strain’s change speed is limited by the low-speed stepper motor. In FS-BOCDA and FS-BOCDR systems, the dynamic strain range depends on the sweep frequency range, and the large sweep frequency range and detectable dynamic strain frequency are mutually restricted. In SA-BOCDA and SA-BOCDR systems, the dynamic range is determined by the linear region of the BGS, and the dynamic strain frequency is limited by the signal acquisition speed and the dynamic strain’s change speed. In future research, a VCO could be introduced into an SA system to provide high-frequency dynamic strain and a high-speed digital oscilloscope for real-time sampling to achieve vibration measurement at the kHz scale, with a large range of dynamic strain. The BGS’s ascending and descending linear regions are complementary to the Brillouin phase spectrum (BPS) of the SA system; combining the BGS with the BPS can expand the dynamic range and improve the measurement accuracy [84].
- Distributed measurement. SBS occurs at the relevant position of the two lights in the fiber, while the Brillouin interactions at the non-correlation position are weak. As a result, the correlation-domain system is essentially a single- or multi-point measurement. To achieve fully distributed measurement, ultra-long delay lines or programmable optical delay lines are used, which is time-consuming. The chaotic correlation demodulation method and synchronous demodulation method, which combine the time domain and the correlation domain, could be adopted to achieve rapidly distributed measurement of vibrations along optical fibers.
- Difficult practical engineering. Dynamic strain measurements in Brillouin optical correlation-domain systems with high SR have not been applied in engineering. The stability, simplicity, and cost should also be considered, as they are important in practical applications.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Minardo, A.; Bernini, R.; Zeni, L.; Thevenaz, L.; Briffod, F. A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results. Meas. Sci. Technol. 2005, 16, 900–908. [Google Scholar] [CrossRef]
- Kurashima, T.; Koyamada, Y.; Furukawa, S.; Izumita, H.; Horiguchi, T. Brillouin optical-fiber time domain reflectometry. IEICE Trans. Commun. 1993, E76, 382–390. [Google Scholar]
- Wang, B.Z.; Hua, Z.J.; Pang, C.; Zhou, D.W.; Ba, D.X.; Lin, D.Y.; Dong, Y.K. Fast Brillouin optical time-domain reflectometry based on the frequency-agile technique. J. Light. Technol. 2020, 38, 946–952. [Google Scholar] [CrossRef]
- Bai, Q.; Wang, Q.L.; Wang, D.; Wang, Y.; Gao, Y.; Zhang, H.J.; Zhang, M.J.; Jin, B.Q. Recent advances in Brillouin optical time domain reflectometry. Sensors 2019, 19, 1862. [Google Scholar] [CrossRef] [PubMed]
- Koyamada, Y.; Sakairi, Y.; Takeuchi, N.; Adachi, S. Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry. IEEE Photonics Technol. Lett. 2007, 19, 1910–1912. [Google Scholar] [CrossRef]
- Bai, Q. Research on Key Technologies for Performance Enhancement of BOTDR System; Taiyuan University of Technology: Taiyuan, China, 2019. [Google Scholar]
- Horiguchi, T.; Tateda, M. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory. J. Light. Technol. 1989, 7, 1170–1176. [Google Scholar] [CrossRef]
- Sun, X.Z.; Yang, Z.S.; Hong, X.B.; Zaslawski, S.; Wang, S.; Soto, M.A.; Gao, X.; Wu, J.; Thevenaz, L. Genetic-optimised aperiodic code for distributed optical fibre sensors. Nat. Commun. 2020, 11, 5774. [Google Scholar] [CrossRef]
- Wang, B.Z.; Fan, B.H.; Zhou, D.W.; Pang, C.; Li, Y.; Ba, D.X.; Dong, Y.K. High-performance optical chirp chain BOTDA by using a pattern recognition algorithm and the differential pulse-width pair technique. Photonics Res. 2019, 7, 652–658. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Qian, Y.Y.; Zhang, Z.; Wang, X.Z.; Xue, Y.H.; Yuan, Y.G.; Wang, Y.C.; Qin, Y.W. High Spatial Resolution Internal Stress Testing and Analysis of Fiber Optic Winding Structure Using BOTDA. J. Light. Technol. 2023, 15, 5138–5145. [Google Scholar] [CrossRef]
- Kim, Y.H.; Song, K.Y. Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification. Opt. Express 2017, 25, 14098–14105. [Google Scholar] [CrossRef]
- Chai, J.; Zhang, M.J.; Liu, Y.; Li, l.; Xu, W.P.; Wang, Y.C. Distributed fiber temperature sensor using a laser diode modulated by a pseudo-random bit sequence. Chin. Opt. Lett. 2015, 13, 080604. [Google Scholar] [CrossRef]
- He, Z.Y.; Mizuno, Y.; Zou, W.W.; Hotate, K. Operation of Brillouin optical correlationdomain reflectometry: Theoretical analysis and experimental validation. J. Light. Technol. 2010, 28, 3300–3306. [Google Scholar]
- Mizuno, Y.; Lee, H.; Hayashi, N.; Nakamura, K. Noise suppression technique for distributed Brillouin sensing with polymer optical fibers. Opt. Lett. 2019, 44, 2097–2100. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Lee, H.; Nakamura, K. Recent advances in Brillouin optical correlation-domain reflectometry. Appl. Sci. 2018, 8, 1845. [Google Scholar] [CrossRef]
- Zhang, M.J.; Bao, X.Y.; Chai, J.; Zhang, Y.N.; Liu, R.X.; Liu, H.; Liu, Y.; Zhang, J.Z. Impact of Brillouin amplification on the spatial resolution of noise-correlated Brillouin optical reflectometry. Chin. Opt. Lett. 2017, 15, 080603. [Google Scholar] [CrossRef]
- Hotate, K.; Hasegawa, T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique--proposal, experiment and simulation. IEICE Trans. Electron. 2000, E83, 405–412. [Google Scholar]
- Zadok, A.; Antman, Y.; Primerov, N.; Denisov, A.; Sancho, J.; Thevenaz, L. Random-access distributed fiber sensing. Laser Photonics Rev. 2012, 6, L1–L5. [Google Scholar] [CrossRef]
- Cohen, R.; London, Y.; Antman, Y.; Zadok, A. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission. Opt. Express 2014, 22, 12070–12078. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Zhang, M.T.; Zhang, M.J.; Liu, Y.; Feng, C.K.; Wang, Y.H.; Wang, Y.C. Chaotic Brillouin optical correlation-domain analysis. Opt. Lett. 2018, 43, 1722–1725. [Google Scholar] [CrossRef]
- Hotate, K.; He, Z.Y. Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing. J. Light. Technol. 2006, 24, 2541–2557. [Google Scholar] [CrossRef]
- Song, K.Y.; Choi, J.H. Measurement error induced by the power-frequency delay of the light source in optical correlation-domain distributed Brillouin sensors. Opt. Lett. 2018, 43, 5078–5081. [Google Scholar] [CrossRef] [PubMed]
- Song, K.Y.; Youn, J.H.; Choi, J.H. Suppression of systematic errors in Brillouin optical correlation domain analysis based on injection-locking. J. Light. Technol. 2019, 37, 4421–4425. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, M.J. Recent progress in long-range Brillouin optical correlation domain analysis. Sensors 2022, 22, 6062. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Horiguchi, T.; Koyamada, Y.; Kurashima, T. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber. Opt. Lett. 1993, 18, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.K.; Ba, D.X.; Jiang, T.F. High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation. IEEE Photonics J. 2013, 5, 2600407. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, J.D.; Zhu, T.; Yin, G.L.; Bai, Y.Z.; Qu, D.R.; Huang, X.B.; Qiu, F. Fast distributed Brillouin optical fiber sensing based on pump frequency modulation. Appl. Phys. Express 2018, 11, 072502. [Google Scholar] [CrossRef]
- Voskoboinik, A.; Wang, J.; Shamee, B.; Nuccio, S.R.; Zhang, L.; Chitgarha, M.; Willner, A.E.; Tur, M. SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation. J. Light. Technol. 2011, 29, 1729–1735. [Google Scholar] [CrossRef]
- Voskoboinik, A.; Yilmaz, O.F.; Willner, A.W.; Tur, M. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA). Opt. Express 2011, 19, B842–B847. [Google Scholar] [CrossRef]
- Motil, A.; Danon, O.; Peled, Y.; Tur, M. Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor. IEEE Photonics Technol. Lett. 2014, 26, 797–800. [Google Scholar] [CrossRef]
- Ba, D.X.; Wang, B.Z.; Zhou, D.W.; Yin, M.J.; Dong, Y.K.; Li, H.; Lu, Z.W.; Fan, Z.G. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA. Opt. Express 2016, 24, 9781–9793. [Google Scholar] [CrossRef]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 2019, 6, 041302–041336. [Google Scholar] [CrossRef]
- Foaleng, S.M.; Tur, M.; Beugnot, J.C.; Thevenaz, L. High spatial and spectral resolution long-range sensing using Brillouin echoes. J. Light. Technol. 2010, 28, 2993–3003. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Nikles, M.; Thevenaz, L.; Robert, P.A. Brillouin gain spectrum characterization in single-mode optical fibers. J. Light. Technol. 1997, 15, 1842–1851. [Google Scholar] [CrossRef]
- Culverhouse, D.; Farahi, F.; Pannell, C.N.; Jackson, D.A. Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature. Electron. Lett. 1989, 25, 913–915. [Google Scholar] [CrossRef]
- Horiguchi, T.; Kurashima, T.; Tateda, M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photonics Technol. Lett. 1989, 1, 107–108. [Google Scholar] [CrossRef]
- Wang, B.Z. Dynamic Distributed Brillouin Optical Fiber Sensing based on Optical Frequency-Agile Technology; Harbin Institute of Technology: Harbin, China, 2016. [Google Scholar]
- Peled, Y.; Motil, A.; Tur, M. Fast Brillouin optical time domain analysis for dynamic sensing. Opt. Express 2012, 20, 8584–8591. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, J.D.; Zhu, T.; Yin, G.L.; Bai, Y.Z.; Qu, D.R.; Huang, X.B.; Qiu, F. Polarization independent fast BOTDA based on pump frequency modulation and cyclic coding. Opt. Express 2018, 26, 18270–18278. [Google Scholar] [CrossRef]
- Sovran, I.; Motil, A.; Tur, M. Frequency-scanning BOTDA with ultimately fast acquisition speed. IEEE Photonics Technol. Lett. 2015, 27, 1426–1429. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, L.S.; He, H.J.; Li, Z.L.; Qian, H.; Zhang, X.P.; Luo, B.; Pan, W. DWI-assisted BOTDA for dynamic sensing. J. Light. Technol. 2021, 39, 3599–3606. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Kishi, M.; Hotate, K. 5000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis. Appl. Phys. Express 2015, 8, 042501. [Google Scholar] [CrossRef]
- Wang, B.; Fan, X.Y.; Fu, Y.X.; He, Z.Y. Dynamic strain measurement with kHz-level repetition rate and centimeter-level spatial resolution based on Brillouin optical correlation domain analysis. Opt. Express 2018, 26, 6916. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Fan, X.Y.; Fu, Y.X.; He, Z.Y. Dynamic strain measurements based on high-speed single-end-access Brillouin optical correlation domain analysis. J. Light. Technol. 2019, 37, 2557–2567. [Google Scholar] [CrossRef]
- Wang, B.; Fan, X.Y.; Fu, Y.X.; He, Z.Y. Enhancement of strain/temperature measurement range and spatial resolution in Brillouin optical correlation domain analysis based on convexity extraction algorithm. IEEE Access 2019, 7, 32128–32136. [Google Scholar] [CrossRef]
- Mizuno, Y.; Hayashi, N.; Fukuda, H.; Song, K.Y.; Nakamura, K. Ultrahigh-speed distributed Brillouin reflectometry. Light Sci. Appl. 2016, 5, e16184. [Google Scholar] [CrossRef]
- Mizuno, Y.; Hayashi, N.; Fukuda, H.; Nakamura, K. Single-end-access distributed strain sensing with wide dynamic range using higher-speed Brillouin optical correlation-domain reflectometry. Jpn. J. Appl. Phys. 2017, 56, 072501. [Google Scholar] [CrossRef]
- Zhu, G.T.; Kishizawa, K.; Noda, K.; Lee, H.; Nakamura, K.; Mizuno, Y. Wide-dynamic-range Brillouin optical correlation-domain reflectometry with 20-kHz sampling rate. IEEE Sens. J. 2022, 22, 6644–6650. [Google Scholar] [CrossRef]
- Yao, Y.G.; Mizuno, Y. Dynamic strain measurement in Brillouin optical correlation-domain sensing facilitated by dimensionality reduction and support vector machine. Opt. Express 2022, 30, 15616–15633. [Google Scholar] [CrossRef]
- Yao, Y.G.; Lu, Y.G.; Mizuno, Y. Swallow neural network-empowered high-speed Brillouin optical correlation-domain reflectometry: Optimization and real-time operation. IEEE Trans. Instrum. Meas. 2023, 72, 7002212. [Google Scholar] [CrossRef]
- Yao, Y.G.; Lu, Y.G.; Mizuno, Y. Proposal of compressed sensing-assisted Brillouin optical correlation-domain reflectometry for effective repetition rate enhancement. Appl. Phys. Express 2023, 16, 032005. [Google Scholar] [CrossRef]
- Chaube, P.; Colpitts, B.G.; Jagannathan, D.; Brown, A.W. Distributed fiber-optic sensor for dynamic strain measurement. IEEE Sens. J. 2008, 8, 1067–1072. [Google Scholar] [CrossRef]
- Zhou, D.W.; Dong, Y.K.; Pang, C.; Ba, D.X.; Zhang, H.Y.; Lu, Z.W.; Li, H.; Bao, X.Y. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement. Light Sci. Appl. 2018, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Preter, E.; Ba, D.X.; London, Y.; Shlomi, O.; Antman, Y.; Zadok, A. High-resolution Brillouin optical correlation domain analysis with no spectral scanning. Opt. Express 2016, 24, 27253. [Google Scholar] [CrossRef]
- Bernini, R.; Minardo, A.; Zeni, L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Opt. Lett. 2009, 34, 2613–2615. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.W.; Dong, Y.K.; Wang, B.Z. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements. Opt. Express 2017, 25, 1889–1902. [Google Scholar] [CrossRef] [PubMed]
- Hotate, K.; Ong, S.S.L. Distributed dynamic strain measurement using a correlation-based Brillouin sensing system. IEEE Photonics Technol. Lett. 2003, 15, 272–274. [Google Scholar] [CrossRef]
- Wang, B.; Fan, X.Y.; Fu, Y.X.; He, Z.Y. Distributed dynamic strain measurement based on dual-slope-assisted Brillouin optical correlation domain analysis. J. Light. Technol. 2019, 37, 4573–4583. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhao, L.; Zhang, M.J.; Zhang, J.Z.; Qiao, L.J.; Wang, T.; Gao, S.H.; Zhang, Q.; Wang, Y.C. Dynamic strain measurement by a single-slope-assisted chaotic Brillouin optica correlation-domain analysis. Opt. Lett. 2020, 45, 1822. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.H.; Hu, X.X.; Zhang, M.J.; Zhang, J.Z.; Qiao, L.J.; Wang, T.; Gao, S.H.; Himika, A.A. Effect of chaotic time delay signature on Brillouin gain spectrum in the slope-assisted chaotic BOCDA. Opt. Express 2020, 28, 18189. [Google Scholar] [CrossRef]
- Wang, Y.H.; Hu, X.X.; Niu, L.T.; Liu, H.; Zhang, J.Z.; Zhang, M.J. Long-range chaotic Brillouin optical correlation domain analysis with more than one million resolving points. Adv. Photonics Nexus 2023, 2, 036011. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.H.; Hu, X.X.; Guo, Y.; Zhang, J.Z.; Qiao, L.J.; Wang, T.; Gao, S.H.; Zhang, M.J. Improvement of strain measurement accuracy and resolution by dual-slope-assisted chaotic Brillouin optical correlation domain analysis. J. Light. Technol. 2021, 39, 3312–3318. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Wang, Y.H.; Zhang, M.J.; Zhang, Q.; Li, M.W.; Wu, C.Y.; Qiao, L.J.; Wang, Y.C. Time-gated chaotic Brillouin optical correlation domain analysis. Opt. Express 2018, 26, 17597–17607. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Zhao, L.; Hu, X.X.; Guo, Y.; Zhang, J.Z.; Qiao, L.J.; Wang, T.; Gao, S.H. High-accuracy dual-slope-assisted chaotic Brillouin fiber dynamic strain measurement. Acta Phys. Sin. 2021, 70, 100704. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.H.; Niu, L.T.; Liu, H.; Zhang, M.J. Enlargement of dynamic strain range in chaotic Brillouin optical correlation domain analysis by cross-arranged multislope assistance. IEEE Sens. J. 2023, 23, 3623–3628. [Google Scholar] [CrossRef]
- Lee, H.; Hayashi, N.; Mizuno, Y.; Nakamura, K. Slope-assisted Brillouin optical correlation-domain reflectometry: Proof of concept. IEEE Photonics J. 2016, 8, 6802807. [Google Scholar] [CrossRef]
- Lee, H.; Hayashi, N.; Mizuno, Y.; Nakamura, K. Operation of slope-assisted Brillouin optical correlation-domain reflectometry: Comparison of system output with actual frequency shift distribution. Opt. Express 2017, 24, 29191–29198. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Mizuno, Y.; Nakamura, K. Detection of 2-mm-long strained section in silica fiber using slope-assisted Brillouin optical correlation-domain reflectometry. Jpn. J. Appl. Phys. 2018, 57, 020303. [Google Scholar] [CrossRef]
- Lee, H.; Ochi, Y.; Matsui, T.; Matsumoto, Y.; Tanaka, Y.; Nakamura, H.; Mizuno, Y.; Nakamura, K. Distributed strain measurement and possible breakage detection of optical-fiber-embedded composite structure using slope-assisted Brillouin optical correlation-domain reflectometry. Appl. Phys. Express 2018, 11, 072501. [Google Scholar] [CrossRef]
- Lee, H.; Noda, K.; Mizuno, Y.; Nakamura, K. Trade-off relation between strain dynamic range and spatial resolution in slope-assisted Brillouin optical correlation-domain reflectometry. Meas. Sci. Technol. 2019, 30, 075204. [Google Scholar] [CrossRef]
- Dong, Y.K.; Bao, X.Y.; Li, W.H. Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor. Appl. Opt. 2009, 48, 4297–4301. [Google Scholar] [CrossRef]
- Dong, Y.K.; Zhang, H.Y.; Chen, L.; Bao, X.Y. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair. Appl. Opt. 2012, 51, 1229–1235. [Google Scholar] [CrossRef]
- Brown, A.W.; Colpitts, B.G.; Brown, K. Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution. J. Light. Technol. 2007, 25, 381–386. [Google Scholar] [CrossRef]
- Ryu, G.; Kim, G.T.; Song, K.Y.; Lee, S.B.; Lee, S.B.; Lee, K. 50 km-range Brillouin optical correlation domain analysis with first-order backward distributed Raman amplification. J. Light. Technol. 2021, 38, 5199–5204. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, K.; Song, K.Y. Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement. Opt. Express 2015, 23, 33241–33248. [Google Scholar] [CrossRef] [PubMed]
- Elooz, D.; Antman, Y.; Levanon, N.; Zadok, A. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis. Opt. Express 2014, 22, 6453–6463. [Google Scholar] [CrossRef]
- London, Y.; Antman, Y.; Preter, E.; Levanon, N.; Levanon, N.; Zadok, A. Brillouin optical correlation domain analysis addressing 440,000 resolution points. J. Light. Technol. 2016, 34, 4421–4429. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Feng, C.K.; Zhang, M.J.; Liu, Y.; Wu, C.Y.; Wang, Y.H. Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature. Opt. Express 2018, 26, 6962–6972. [Google Scholar] [CrossRef]
- Sciamanna, M.; Shore, K.A. Physics and applications of laser diode chaos. Nat. Photonics 2015, 9, 151–162. [Google Scholar] [CrossRef]
- Zhang, M.J.; Liu, H.; Zhang, J.Z.; Liu, Y.; Liu, R.X. Brillouin backscattering light properties of chaotic laser injecting into an optical fiber. IEEE Photonics J. 2017, 9, 1600610. [Google Scholar] [CrossRef]
- Mizuno, Y.; Zou, W.W.; He, Z.Y.; Hotate, K. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR). Opt. Express 2008, 16, 12148–12153. [Google Scholar] [CrossRef]
- Mizuno, Y.; He, Z.Y.; Hotate, K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme. Opt. Express 2009, 17, 9040–9046. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Guo, N.; Shu, C.; Lu, C. Support vector machine assisted BOTDA utilizing combined Brillouin gain and phase information for enhanced sensing accuracy. Opt. Express 2017, 25, 31210–31220. [Google Scholar] [CrossRef] [PubMed]
Categories | Merits | Disadvantages |
---|---|---|
Sine-FM BOCDA [75,76] | Best MR or SR | MR and SR contradictory SR deterioration |
PM BOCDA [77,78] | Best coupling of MR and SR | |
Chaos-based BOCDA [64,79] | High-incoherence source | Use of variable delay line |
Categories | Enhanced Techniques | Performances 1 | Merits | Disadvantages | |
---|---|---|---|---|---|
FS-BOCDA | VCO [43] | 6 m; 3 cm; 5 Hz; 500 µε | Ultrahigh speed | Dynamic strain range limitation | Short sensing range |
LIA-free [44] | 30 m; 8 cm; 20,000 Hz; 1200 µε | SR deterioration | |||
Single-ended access [45] | 45 m; 5.6 cm; 10,000 Hz; 1200 µε | Flexible structure | PMF sensing | ||
convexity extraction algorithm [46] | 700 m; 8 cm; 200 Hz; 400 µε | High SNR, large dynamic range | |||
FS-BOCDR | VCO [47,49] | 4 m; 64 cm; 1000 Hz; 2000 µε | Single-point measurement | ||
20.4 m; 39 cm; 40 Hz; 4500 µε | Ultrahigh speed | Dynamic strain range limitation | |||
PCA, SVM algorithm [50] | 0.64 m; 50 cm; 40 Hz; 4000 µε | ||||
NN algorithm [51] | 0.64 m; 50 cm; 40 Hz; 4000 µε | Large dynamic range | Measurement accuracy deterioration | ||
CS algorithm [52] | 80 m; 25 cm; 40 Hz; 1200µε | High effective repetition rate | Dynamic strain range limitation | ||
SA-BOCDA | Dual-slope-assisted [59] | 20 m; 7 cm; 100 Hz; 700 µε | Insensitive to pump and fiber loss | Repetition rate limitation | |
Chaos-based [60,63,66] | 130 m; 3.45 cm; 4.67 Hz; 1200µε | High SR, large dynamic range | Measurement accuracy deterioration | ||
25 m; 4.2 cm; 0.2232 Hz; 4780µε | |||||
25 m; 3.8 cm; 1.03 Hz; 800 µε | Measurement accuracy | Dynamic strain range limitation | |||
SA-BOCDR | Single-slope-assisted [68,71] | 14.5 m; 9.5 cm | Proof-of-concept | Static strain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, J.; Ma, J.; Niu, L.; Zhang, M. High-Spatial-Resolution Dynamic Strain Measurement Based on Brillouin Optical Correlation-Domain Sensors. Photonics 2023, 10, 1255. https://doi.org/10.3390/photonics10111255
Wang Y, Chen J, Ma J, Niu L, Zhang M. High-Spatial-Resolution Dynamic Strain Measurement Based on Brillouin Optical Correlation-Domain Sensors. Photonics. 2023; 10(11):1255. https://doi.org/10.3390/photonics10111255
Chicago/Turabian StyleWang, Yahui, Jing Chen, Jinglian Ma, Lintao Niu, and Mingjiang Zhang. 2023. "High-Spatial-Resolution Dynamic Strain Measurement Based on Brillouin Optical Correlation-Domain Sensors" Photonics 10, no. 11: 1255. https://doi.org/10.3390/photonics10111255
APA StyleWang, Y., Chen, J., Ma, J., Niu, L., & Zhang, M. (2023). High-Spatial-Resolution Dynamic Strain Measurement Based on Brillouin Optical Correlation-Domain Sensors. Photonics, 10(11), 1255. https://doi.org/10.3390/photonics10111255