Cryogenic Systems for Astronomical Research in the Special Astrophysical Observatory of the Russian Academy of Sciences
Abstract
:1. Introduction
1.1. The Special Astrophysical Observatory of the Russian Academy of Sciences among Astronomical Observatories: Instrumentation and Astroclimate
1.2. Main Types of Cooling Systems for Astronomical Receivers
2. Materials and Methods: Development of Cryogenic Systems for Optical and Radio Astronomy at SAO RAS
2.1. Cooling Systems for CCD Arrays
2.1.1. Nitrogen-Cooled Optical Cryostat
- T = 80 K;
- Vacuum level is 10−4 mbar (at least 3 months);
- Overall dimensions: diameter 224 × 464 mm;
- Vacuum camera dimensions: 160 (diameter) × 80 mm (height);
- Optical window: window with a diameter of 109 mm, window material is quartz.
2.1.2. Optical Vacuum Chambers with Cooling by the CryoTiger Cryogenic System
2.1.3. Chambers with Thermoelectric Modules for Cooling Large-Format CCD Arrays
- T = 150 K;
- Vacuum level is 10−4 mbar;
- Dimensions of the vacuum cavity: 174 × 176 × 89 mm;
- Optical window:
- Diameter—90 mm;
- Material—quartz.
2.1.4. Nitrogen Optical Cryostat for Cooling the IR Spectrophotometer
- Minimal temperature is T = 80 K;
- Filler nitrogen cryostat with a nitrogen tank of complex shape;
- All elements of the optical scheme of the IR spectrophotometer are cooled to different temperatures inside the cryostat, including moving parts;
- System dimensions: diameter 572 mm, height 660 mm;
- Weight without cryoagent (nitrogen) 30 kg;
- Volume of the cryoagent tank22 L;
- Optical window: diameter 90 mm, material is quartz;
- Electrical connector SNC13-102—3 pieces;
- Pumping flange—KF16.
- Large-volume nitrogen optical no-spill Dewar;
- Ensures different temperatures of parts of the optical path;
- Minimal temperature is T = 80 K ± 2 K;
- It is possible to place the cryostat in the primary focus of the BTA at SAO RAS.
2.1.5. Systems with Remote Cooling
2.2. Cooling Systems for Radioreceivers of RATAN-600
2.2.1. The 20 K Cryogenic Radiometer of 4 mm Band
2.2.2. The Last Cryogenic Receiver of RATAN-600
- Available cryogenic systems and their maximum cooling levels and cooling capacity, as well as being ready to pay big money for unique systems;
- The development of semiconductor and superconducting technologies of detectors and amplifiers of the corresponding frequency range of observations within a total spectrum from RF to UV waves for SAO RAS;
- Atmospheric limitations of the location of the observatory also determining the effectiveness of the telescope in a particular frequency range.
- -
- Frequency range 18.5–21.5 GHz (center frequency 20 GHz) and 27.5–32.5 GHz;
- -
- The possibility of receiving two mutually perpendicular polarizations of electromagnetic radiation;
- -
- Working temperature is 80 K;
- -
- Construction scheme—modulating with a waveguide ferrite switch and a cooled matched load;
- -
- Fluctuation sensitivity is not worse than 5 mK per 1 s of the time constant of the output filter.
2.2.3. Is Cryogenics Required for Optical Receivers?
3. Results and Discussions
3.1. Results of the Development of Cooling of Optical Receivers for an Optical Telescope and Radio Receivers for a Radio Telescope
- Direct evidence of the fossil origin of large-scale magnetic fields of chemically peculiar stars obtained [39];
- The discovery of new LBVs in the Local Volume galaxy NGC 1156 [40];
- Planet TOI1408.01: a grazing transit and probably a highly eccentric orbit [41];
- Collected RATAN-600 multifrequency data for the BL Lacertae objects [42];
- The RATAN-600 telescope helps to understand the origin of cosmic neutrinos [43];
- Identified Quasi-periodic Pulsations in a Solar Microflare [44].
3.2. Cooling Systems of the Sub-THz Range for Radioreceivers as a Part of the BTA Telescope
- Operating temperature: 300 mK ± 0.1 K;
- Heat load: 1 mW;
- Vacuum level: 10−4 mbar;
- Two flanges for the installation of optical windows with a diameter of 25 mm;
- Flange KF D25 for pumping;
- Input of electrical and RF connectors;
- The size of the working cavity: diameter 185 mm, height—70 mm, dimensions—not more than 1600 mm;
- Diameter: 700 mm.
- -
- Compact placement inside the cryostat;
- -
- Possibility of automation;
- -
- Low cost compared to mechanical pumping means.
- -
- A two-stage sorption pumping system has been developed;
- -
- The gas heat key is integrated with the sorption pump into a single unit;
- -
- The technology of manufacturing sorption pumps makes it possible to obtain a high degree of pumping compared to Western analogues;
- -
- Two models were developed: with filler and using a closed-loop cryogenic system.
3.3. Sorption Cryostat
3.4. Cryogenic System for Sub-THz Detectors for the BTA Based on a Dilution Microcryostat–Deep Stick
3.5. A Continuously Operating Dilution Microcryostat
- The 4He unit that includes a 1 K chamber and a 3He condensation volume, which constitute a common unit, and a sorption pump that evacuates helium vapors. The 4He sorber (as well the 3He sorber) is above the 4He bath and both 3He baths. Heat is withdrawn from the sorber to liquid helium in the portable Dewar flask through copper heat conductors. The sorber on which a heater is wound is manufactured from stainless steel and placed in a sealed copper container. The evacuation channel consists of a stainless steel tube into which a copper tube about 5 mm long is soldered. The latter passes through the container cover and is soldered to it. In this tube, 4He condenses and trickles down to the 1 K chamber. A thermal valve, during whose heating/cooling the heat exchanging gas (3He) is desorbed/sorbed, serves for controlling the heat exchange between the sorber and the container walls. This is necessary when changing from the 4He desorption regime to its evacuation.
- The upper 3He unit that contains the 3He sorber and the condenser of 3He vapors, which is soldered into it and serves for the lower 3He bath. The 3He bath is cooled by the evacuation of vapors of liquid 3He by its own sorption pump, which is analogous to the 3He pump. When the pump is regenerated, the bath is filled with 3He, which is liquefied when being in contact with the 1 K chamber.
- The lower 3He unit that contains the second 3He bath, which is under the first bath and is connected to the condenser of 3He vapors of the upper circuit with a stainless steel tube. The both circuits are sealed with respect to each other. If the temperature of the upper bath is lower than that of the lower bath, a good thermal contact establishes between them; otherwise, the thermal interaction is substantially weakened.
- The dilution unit that contains a dilution bath (mixer), a heat exchanger, a still, and a condenser of vapors of a 3He–4He mixture. The condenser is filled with plates of holmium that has the high specific heat at T < 1 K. For a He mass of ~50 g, its specific heat at T = 0.4 K is ~2 J/K. This allowed us not to use a large amount of 3He for maintaining the working conditions during the regeneration of 3He in the upper circuit, and to restrict ourselves to a rather small amount of 3He, only 0.015 mol in the lower circuit for establishing thermal coupling. The dilution circuit is placed above the sorption pumps, and the condenser included in it is connected to the lower 3He bath via a copper heat conductor. The temperature difference between the upper 3He bath and the condenser at T = 0.4 K is approximately 0.02 K/100 µW.
3.6. Dilution Microcryostat with Cooling by a Refrigerator with a Pulse Tube
- -
- Minimum fixed temperature of the sample holder: 0.07 K.
- -
- Performance at 0.1 K: about 1–3 μW.
- -
- Cooling time to 0.1 K (from the start of pumping 3He): 30–40 min.
- -
- Time of regeneration of sorbers, condensation, and cooling 3He up to 1 K: about 1.5 h.
- -
- Time of temperature maintenance below 0.1 K: 4–6 h.
- -
- Time to maintain working conditions when PT is turned off: up to 8–9 h.
- -
- The time to restore the initial conditions after a new start PT: approximately 1 h.
- -
- Cooling time from room temperature to 0.1 K: 10–12 h.
- -
- Quantity of gases used: 4.5 n.l. 4He; 3 n.l 3He; 1 n.l of mixture 30% 3Ha + 70% 4He.
- -
- Energy and water consumption during PT operation according to the manufacture’s passport: 6–8 kWh and 8–10 L/min.
4. Conclusions
- -
- A successful line of cryogenic systems actually working at various temperature levels has been developed actively used over the years, and is now used for cooling photodetectors in the BTA telescope and radio receivers for the RATAN radio telescope;
- -
- This work presents a new unique project of a cryosystem for the ultradeep cooling of a radio receiver for the BTA optical telescope;
- -
- -
- Dozens of highly efficient and reliable cryogenic systems have been developed that cool highly sensitive radio and photodetectors of the two telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences. Using these instruments, new unique astronomical results were obtained, presented in a wide list of highly rated publications reviewed in [39,40,41,42,43,44,56].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tychoniec, Ł.; Guglielmetti, F.; Arras, P.; Enßlin, T.; Villard, E. Bayesian Statistics Approach to Imaging of Aperture Synthesis Data: RESOLVE Meets ALMA. Phys. Sci. Forum 2022, 5, 52. [Google Scholar]
- ALMA Observatory. About ALMA, at First Glance|ALMA. Available online: https://www.almaobservatory.org/en/about-alma (accessed on 10 November 2023).
- Sachkov, M.; de Castro, A.I.G.; Shustov, B.; Sichevsky, S.; Shugarov, A. World Space Observatory-Ultraviolet mission: Status 2022. In Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray; SPIE: Bellingham, DC, USA, 2022. [Google Scholar]
- Chen, Z.-R.; Tsai, W.-C.; Huang, S.-F.; Li, T.-Y.; Song, C.-Y. Classification of Plank Techniques Using Wearable Sensors. Sensors 2022, 22, 4510. [Google Scholar] [CrossRef] [PubMed]
- Khokhriakova, A.D.; Chugunov, A.I.; Popov, S.B.; Gusakov, M.E.; Kantor, E.M. Observability of HOFNARs at SRG/eROSITA. Universe 2022, 8, 354. [Google Scholar] [CrossRef]
- Lamb, J.W. Miscellaneous data on materials for millimetre and submillimetre optics. Int. J. Infrared Millim. Waves 1996, 17, 1997–2034. [Google Scholar] [CrossRef]
- Lovyagin, N.; Raikov, A.; Yershov, V.; Lovyagin, Y. Cosmological Model Tests with JWST. Galaxies 2022, 10, 108. [Google Scholar] [CrossRef]
- NASA. Webb Image Release- Webb Space Telescope GSFC/NASA. Available online: https://webb.nasa.gov/ (accessed on 10 November 2023).
- NSF. The South Pole Telescope. Available online: https://pole.uchicago.edu/public/Home.html (accessed on 10 November 2023).
- SAO RAS. SAO RAS Home Page. Available online: https://www.sao.ru/Doc-en/index.html (accessed on 10 November 2023).
- Shulga, V.M.; Zinchenko, I.I.; Nesterov, N.S.; Myshenko, V.V.; Andriyanov, A.F.; Isaev, V.F.; Knyazkov, L.B.; Lapinov, A.V.; Litvenenko, L.N.; Maltsev, V.A.; et al. Molecular Line Observations in the 85-GHZ to 90-GHZ Band Using a Maser Receiver at the Crimean Astrophysical Observatory 22-METER Radio Telescope. Sov. Astron. Lett. 1991, 17, 448. [Google Scholar]
- Lapinov, A.V.; Lapinova, S.A.; Petrov, L.Y.; Ferrusca, D. On the benefits of the Eastern Pamirs for sub-mm astronomy. In Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X; SPIE: Bellingham, DC, USA, 2020. [Google Scholar]
- Khaikin, V.B.; Khaikin, V.B.; Shikhovtsev, A.Y.; Mironov, A.P.; Qian, X. A study of the astroclimate in the Dagestan mountains Agul region and at the Ali Observatory in Tibet as possible locations for the Eurasian SubMM Telescopes (ESMT). Proc. Sci. 2002, 425, 72–79. [Google Scholar]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Khaikin, V.B.; Kiselev, A.V. Precipitable Water Vapor and Fractional Clear Sky Statistics within the Big Telescope Alt-Azimuthal Region. Remote Sens. 2022, 14, 6221. [Google Scholar] [CrossRef]
- Battistelli, E.S.; Capalbo, V.; Isopi, G.; Radiconi, F. Status of Cosmic Microwave Background Observations for the Search of Primordial Gravitational Waves. Universe 2022, 8, 489. [Google Scholar] [CrossRef]
- Collaboration, The Event Horizon Telescope; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar]
- Raymond, A.W.; Palumbo, D.; Paine, S.N.; Blackburn, L.; Rosado, R.C.; Doeleman, S.S.; Farah, J.R.; Johnson, M.D.; Roelofs, F.; Tilanus, R.P.J.; et al. Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl. Ser. 2021, 253, 5. [Google Scholar] [CrossRef]
- Bubnov, G.M.; Abashin, E.B.; Balega, Y.Y.; Bolshakov, O.S.; Dryagin, S.Y.; Dubrovich, V.K.; Marukhno, A.S.; Nosov, V.I.; Vdovin, V.F.; Zinchenko, I.I.; et al. Searching for New Sites for THz Observations in Eurasia. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 64–72. [Google Scholar] [CrossRef]
- Zinchenko, I.I.; Lapinov, A.V.; Vdovin, V.F.; Zemlyanukha, P.M.; Khabarova, T.A. Measurements and Evaluations of the Atmospheric Transparency at Short Millimeter Wavelengths at the Candidate Sites for Millimeter and Submillimeter Wave Telescopes. Appl. Sci. 2023, 13, 11706. [Google Scholar] [CrossRef]
- Ladu, A.; Schirru, L.; Ortu, P.; Saba, A.; Pili, M.; Navarrini, A.; Gaudiomonte, F.; Marongiu, P.; Pisanu, T. Adaptation of an IRAM W-Band SIS Receiver to the INAF Sardinia Radio Telescope: A Feasibility Study and Preliminary Tests. Sensors 2023, 23, 7414. [Google Scholar] [CrossRef] [PubMed]
- Baryshev, A.; Bolshakov, O.; Chernikov, A.; Gunbina, A.; Efimova, M.; Eliseev, A.; Krasilnikov, A.; Lapkin, I.; Lesnov, I.; Mansfeld, M.; et al. Development of cryogenic systems for astronomical research. Photonics, 2023; to be submitted. [Google Scholar]
- Murzin, V.A.; Markelov, S.V.; Ardilanov, V.I.; Afanaseva, T.; Borisenko, A.; Ivashchenko, N.; Pritychenko, M.; Mitiani, G.; Vdovin, V. Astronomical CCD systems for the 6-meter telescop BTA (a review). Appl. Phys. 2016, 4, 500–506. (In Russian) [Google Scholar]
- Gardner, D.V. Does Your CCD Camera Need Cooling? Available online: https://www.photonics.com/Articles/Does_Your_CCD_Camera_Need_Cooling/a12810 (accessed on 10 November 2023).
- Cease, H.; DePoy, D.; Derylo, G.; Diehl, H.T.; Estrada, J.; Flaugher, B.; Kuk, K.; Kuhlmann, S.; Lathrop, A.; Schultz, K.; et al. Cooling the dark energy camera CCD array using a closed-loop two-phase liquid nitrogen system. In Moden Technologies in Space and Ground-Base Telescopes and Instrumentation; SPIE: Bellingham, DC, USA, 2010; p. 77393N. [Google Scholar]
- Malkov, M.P.; Danilov, I.B.; Zeldovich, A.G.; Fradkov, A.B. Handbook on the Physical and Technical Foundations of Cryogenics, 3rd ed.; Energoatomizdat: Moscow, Russia, 1985; p. 432. [Google Scholar]
- Vdovin, V.F. Problems of cryogenic cooling of superconductor and semiconductor receivers in the range 0.1–1 THz. Radiophys. Quantum Electron. 2005, 48, 779–791. [Google Scholar] [CrossRef]
- Belyaeva, A.I.; Silaev, V.I.; Stelmakhov, Y.N.; Stetsenko, Y.E. Continuous flow cryostats for experiments in the presence of appreciable heat influx to the specimen. Cryogenics 1983, 23, 303–308. [Google Scholar] [CrossRef]
- Cryotiger Coolers. Available online: https://www.ing.iac.es/~eng/detectors/CRYOTIGER_man.pdf (accessed on 10 November 2023).
- Borisenko, A.N.; Vdovin, V.F.; Eliseev, A.I.; Lapkin, I.V.; Markelov, S.V. Cryostating of large CCD matrices. Petersburg J. Electron. 2001, 28, 39–43. (In Russian) [Google Scholar]
- Esepkina, N.A.; Korolkov, D.V.; Pariysky, Y.N. Radio Telescopes and Radiometers; Nauka: Moscow, Russia, 1972; p. 416. [Google Scholar]
- Cryogenic Technique. STC Cryogenic Technique—Home. Available online: https://cryontk.ru/en/ (accessed on 10 November 2023).
- Mimura, T. The early history of the high electron mobility transistor (HEMT). IEEE Trans. Microw. Theory Tech. 2002, 50, 780–782. [Google Scholar] [CrossRef]
- Vdovin, V.F.; Grachev, V.G.; Dryagin, S.Y.; Eliseev, A.I.; Kamaletdinov, R.K.; Korotaev, D.V.; Lesnov, I.V.; Mansfeld, M.A.; Pevzner, E.L.; Perminov, V.G.; et al. Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems. Astrophys. Bull. 2016, 71, 125–128. [Google Scholar] [CrossRef]
- Räisänen, A.A. THz Receivers for Ground and Space; International Seminar on Terahertz Electronics: Darmstadt, Germany, 1994; pp. s.2–s.33. [Google Scholar]
- Virginia Diodes. Virginia Diodes, Inc.—Your Source for Terahertz and mm-Wave Products. Available online: https://www.vadiodes.com/en/ (accessed on 10 November 2023).
- Vdovin, V.F.; Eliseev, A.I.; Zinchenko, I.I.; Koshelets, V.P.; Kuznetsov, I.V.; Lapkin, I.V.; Mujunen, A.; Oinaskallio, E.; Peltonen, J.; Pilipenko, O.M.; et al. A Two-Frequency Two-Polarization Superconducting Receiver for Radio-Astronomical Investigations in the Millimeter Wave Band. J. Commun. Technol. Electron. 2005, 50, 1118–1122. [Google Scholar]
- Kraus, J.D. Radio Astronomy; Cygnus-Quasar Books: Powell, OH, USA, 1986; p. 719. ISBN 1882484002. [Google Scholar]
- Masuda, T.; Hiramoto, A.; Ang, D.G.; Meisenhelder, C.; Panda, C.D.; Sasao, N.; Uetake, S.; Wu, X.; DeMille, D.P.; Gabrielse, D.G.; et al. High-sensitivity low-noise photodetector using a large-area silicon photomultiplier. Opt. Express 2023, 31, 1943–1957. [Google Scholar] [CrossRef]
- Semenko, E.; Romanyuk, I.; Yakunin, I.; Kudryavtsev, D.; Moiseeva, A. Spectropolarimetry of magnetic Chemically Peculiar stars in the Orion OB1 association. Mon. Not. R. Astron. Soc. 2022, 515, 998–1011. [Google Scholar] [CrossRef]
- Solovyeva, Y.; Vinokurov, A.; Tikhonov, N.; Kostenkov, A.; Atapin, K.; Sarkisyan, A.; Moiseev, A.; Fabrika, S.; Oparin, D.; Valeev, A. Search for LBVs in the Local Volume galaxies: Study of two stars in NGC 1156. Mon. Not. R. Astron. Soc. 2022, 518, 4345–4356. [Google Scholar] [CrossRef]
- Galazutdinov, G.A.; Baluev, R.V.; Valyavin, G.; Aitov, V.; Gadelshin, D.; Valeev, A.; Sendzikas, E.; Sokov, E.; Mitiani, G.; Burlakova, T.; et al. Doppler confirmation of TESS planet candidate TOI−1408.01: Grazing transit and likely eccentric orbit. Mon. Not. R. Astron. Soc. Lett. 2023, 526, L111–L115. [Google Scholar] [CrossRef]
- Mingaliev, M.G.; Sotnikova, Y.V.; Udovitskiy, R.Y.; Mufakharov, T.V.; Nieppola, E.; Erkenov, A.K. RATAN-600 multi-frequency data for the BL Lacertae objects. Astronomy 2014, 572, A59. [Google Scholar] [CrossRef]
- Plavin, A.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S. Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies. Astrophys. J. 2020, 894, 101. [Google Scholar] [CrossRef]
- Nakariakov, V.M.; Anfinogentov, S.; Storozhenko, A.A.; Kurochkin, E.A.; Bogod, V.M.; Sharykin, I.N.; Kaltman, T.I. Quasi-periodic Pulsations in a Solar Microflare. Astrophys. J. 2018, 859, 154. [Google Scholar] [CrossRef]
- Vystavkin, A.N.; Shitov, S.V.; Bankov, S.E.; Kovalenko, A.G.; Pestriakov, A.V.; Cohn, I.A.; Uvarov, A.V.; Vdovin, V.F.; Perminov, V.G.; Trofimov, V.N.; et al. High sensitive 0.13–0.38 THz TES array radiometer for the big telescope azimuthal of Special Astrophysical Observatory of Russian Academy of Sciences. In Proceedings of the 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, Cardiff, UK, 2–9 September 2007. [Google Scholar]
- Camus, P.; Vermeulen, G.; Volpe, A.; Triqueneaux, S.; Benoit, A.; Butterworth, J.; d’Escrivan, S.; Tirolien, T. Status of the Closed-Cycle Dilution Refrigerator Development for Space Astrophysics. J. Low Temp. Phys. 2013, 176, 1069–1074. [Google Scholar] [CrossRef]
- Frossati, G. Experimental techniques: Methods for cooling below 300 mK. J. Low Temp. Phys. 1992, 87, 595–633. [Google Scholar] [CrossRef]
- Benoit, A.; Pujol, S. A dilution refrigerator insensitive to gravity. Phys. B Condens. Matter 1991, 169, 457–458. [Google Scholar] [CrossRef]
- Benoît, A.; Caussignac, M.; Pujol, S. New types of dilution refrigerator and space applications. Phys. B Condens. Matter 1994, 197, 48–53. [Google Scholar] [CrossRef]
- Sirbi, A.; Pouilloux, B.; Benoit, A.; Lamarre, J.-M. Influence of the astrophysical requirements on dilution refrigerator design. Cryogenics 1999, 39, 665–669. [Google Scholar] [CrossRef]
- Chernikov, A.N.; Trofimov, V.N. Helium-3 adsorption refrigerator cooled with a closed-cycle cryocooler. J. Surf. Investigation. X-ray Synchrotron Neutron Tech. 2014, 8, 956–960. [Google Scholar] [CrossRef]
- Tarasov, M.; Gunbina, A.; Chekushkin, A.; Yusupov, R.; Edelman, V.; Koshelets, V. Microwave SINIS Detectors. Appl. Sci. 2022, 12, 10525. [Google Scholar] [CrossRef]
- Cryogenic Society. Cold Facts. Available online: https://www.cryogenicsociety.org/cold-facts (accessed on 10 November 2023).
- Edelman, V.S. A continuously operating dilution microcryostat. Instrum. Exp. Tech. 2012, 55, 145–148. [Google Scholar] [CrossRef]
- Herrmann, R.; Ofitserov, A.V.; Khlyustikov, I.N.; Edel\textquotesingleman, V.S. A Portable Dilution Refrigerator. Instrum. Exp. Tech. 2005, 48, 693–702. [Google Scholar] [CrossRef]
- Stolyarov, V.; Balega, Y.; Mingaliev, M.; Sotnikova, Y.; Vdovin, V.; Gunbina, A.; Tarasov, M.; Fominskii, M.; Chekushkin, A.; Edelman, V.; et al. Prospects for the Development of Millimeter Astronomy in SAO RAS. Astrophys. Bull. 2023; under review. [Google Scholar]
Cooling with One CryoTiger | Cooling with Two CryoTiger Units | |
---|---|---|
Main Features |
Material—quartz. |
Material—quartz. |
Advantages |
(superinvar);
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balega, Y.; Bolshakov, O.; Chernikov, A.; Edelman, V.; Eliseev, A.; Emelyanov, E.; Gunbina, A.; Krasilnikov, A.; Lesnov, I.; Mansfeld, M.; et al. Cryogenic Systems for Astronomical Research in the Special Astrophysical Observatory of the Russian Academy of Sciences. Photonics 2023, 10, 1263. https://doi.org/10.3390/photonics10111263
Balega Y, Bolshakov O, Chernikov A, Edelman V, Eliseev A, Emelyanov E, Gunbina A, Krasilnikov A, Lesnov I, Mansfeld M, et al. Cryogenic Systems for Astronomical Research in the Special Astrophysical Observatory of the Russian Academy of Sciences. Photonics. 2023; 10(11):1263. https://doi.org/10.3390/photonics10111263
Chicago/Turabian StyleBalega, Yurii, Oleg Bolshakov, Aleksandr Chernikov, Valerian Edelman, Aleksandr Eliseev, Eduard Emelyanov, Aleksandra Gunbina, Artem Krasilnikov, Ilya Lesnov, Mariya Mansfeld, and et al. 2023. "Cryogenic Systems for Astronomical Research in the Special Astrophysical Observatory of the Russian Academy of Sciences" Photonics 10, no. 11: 1263. https://doi.org/10.3390/photonics10111263
APA StyleBalega, Y., Bolshakov, O., Chernikov, A., Edelman, V., Eliseev, A., Emelyanov, E., Gunbina, A., Krasilnikov, A., Lesnov, I., Mansfeld, M., Markelov, S., Markina, M., Mitiani, G., Pevzner, E., Tyatushkin, N., Valyavin, G., Vdovin, A., & Vdovin, V. (2023). Cryogenic Systems for Astronomical Research in the Special Astrophysical Observatory of the Russian Academy of Sciences. Photonics, 10(11), 1263. https://doi.org/10.3390/photonics10111263