Highly Responsive, Miniaturized Methane Telemetry Sensor Based on Open-Path TDLAS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of Direct Absorption Spectroscopy
2.2. The Selection of CH4 Absorption Lines
2.3. Experimental Configuration
3. Results
3.1. The Calibration Experiments of Methane Telemetry Sensors
3.2. Stability and Minimum Limit Experiments
3.3. Response Time Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Wang, B.A.; Chen, L.X.; Yu, Y.B.; Dai, T.X.; Lian, H.Q. Development of VCSEL laser detection system for methane gas. In Proceedings of the International Conference on Sensors and Instruments (ICSI), Qingdao, China, 28–30 May 2021; SPIE—International Society for Optics and Photonics: Baltimore, MD, USA, 2021. [Google Scholar]
- Huang, Y.; Fu, W.; Yang, S.; Li, C.G.; Hu, X.W.; Zhang, M.R.; Chen, C.; Chang, S.P. Highly sensitive measurement of trace methane gas using mid-infrared tunable diode laser absorption spectroscopy method. Microw. Opt. Technol. Lett. 2023, 5. [Google Scholar] [CrossRef]
- Wang, Z.M.; Wang, H.; Yu, Y.C.; Zhang, M.Y.; Ma, L.L.; Zou, F.; Wang, C.H.; Kang, J.J. Simulation and Analysis of CH4 Concentration Measurement Based on QCL-TDLAS. In Proceedings of the 2nd Global Conference on Ecological Environment and Civil Engineering (GCEECE), Guangzhou, China, 7–9 August 2020; IOP Publishing Ltd.: Bristol, UK, 2020. [Google Scholar]
- Dong, L.; Tittel, F.K.; Li, C.G.; Sanchez, N.P.; Wu, H.P.; Zheng, C.T.; Yu, Y.J.; Sampaolo, A.; Griffin, R.J. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing. Opt. Express 2016, 24, A528–A535. [Google Scholar] [CrossRef]
- Ziting, L.; Shunda, Q.; Yufei, M. Fabry–Perot-based phase demodulation of heterodyne light-induced thermoelastic spectroscopy. Light Adv. Manuf. 2023, 4, 23. [Google Scholar]
- Zhang, C.; Qiao, S.D.; He, Y.; Zhou, S.; Qi, L.; Ma, Y.F. Differential quartz-enhanced photoacoustic spectroscopy. Appl. Phys. Lett. 2023, 122, 6. [Google Scholar] [CrossRef]
- Witzel, O.; Klein, A.; Meffert, C.; Wagner, S.; Kaiser, S.; Schulz, C.; Ebert, V. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express 2013, 21, 19951–19965. [Google Scholar] [CrossRef]
- Liu, C.; Xu, L.J.; Chen, J.L.; Cao, Z.; Lin, Y.Z.; Cai, W.W. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration. Opt. Express 2015, 23, 22494–22511. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, Q.; Zhang, T.; Liu, T.; Wang, Z.; Wei, Y. Study on laser methane remote sensor based on TDLAS. In AOPC 2022: Atmospheric and Environmental Optics; SPIE: Bellingham, WA, USA, 2023; p. 125610A. [Google Scholar]
- Witt, F.; Nwaboh, J.; Bohlius, H.; Lampert, A.; Ebert, V. Towards a Fast, Open-Path Laser Hygrometer for Airborne Eddy Covariance Measurements. Appl. Sci. 2021, 11, 10. [Google Scholar]
- Sun, J.C.; Chang, J.; Wei, Y.B.; Zhang, Z.F.; Lin, S.; Wang, F.P.; Zhang, Q.D. Dual gas sensor with innovative signal analysis based on neural network. Sens. Actuator B-Chem. 2022, 373, 10. [Google Scholar] [CrossRef]
- Lin, H.Z.; Wu, K.H.; Zhang, T.; Lai, X.M.; Mei, L. Remote sensing of vehicle emitted carbon oxides employing wavelength modulation spectroscopy and a segment modulation method. Microw. Opt. Technol. Lett. 2023, 65, 1162–1168. [Google Scholar] [CrossRef]
- Lu, H.B.; Zheng, C.T.; Zhang, L.; Liu, Z.W.; Song, F.; Li, X.Y.; Zhang, Y.; Wang, Y.D. A Remote Sensor System Based on TDLAS Technique for Ammonia Leakage Monitoring. Sensors 2021, 21, 14. [Google Scholar]
- Yang, H.Q.; Bu, X.Z.; Cao, Y.H.; Song, Y. A methane telemetry sensor based on near-infrared laser absorption spectroscopy. Infrared Phys. Technol. 2021, 114, 8. [Google Scholar]
- Shen, S.Q.; Li, W.; Wang, M.J.; Wang, D.; Li, Y.S.; Li, D. Methane near-infrared laser remote detection under non-cooperative target condition based on harmonic waveform recognition. Infrared Phys. Technol. 2022, 120, 9. [Google Scholar] [CrossRef]
- Li, G.L.; Ma, K.; Jiao, Y.; Jiang, Q.Z.; Zhang, X.N.; Zhang, Z.C.; Wu, Y.H.; Song, D. Performance enhancement of DFBL based near-infrared CH4 telemetry system using a focus tunable lens. Microw. Opt. Technol. Lett. 2021, 63, 1147–1151. [Google Scholar] [CrossRef]
- Li, Y.F.; Chang, L.; Zhao, Y.J.; Meng, X.J.; Wei, Y.B.; Wang, X.S.; Yue, J.H.; Liu, T.Y. A fiber optic methane sensor based on wavelength adaptive vertical cavity surface emitting laser without thermoelectric cooler. Measurement 2016, 79, 211–215. [Google Scholar] [CrossRef]
- Raza, M.; Ma, L.H.; Yao, C.Y.; Yang, M.; Wang, Z.; Wang, Q.; Kan, R.F.; Ren, W. MHz-rate scanned-wavelength direct absorption spectroscopy using a distributed feedback diode laser at 2.3 μm. Opt. Laser Technol. 2020, 130, 6. [Google Scholar] [CrossRef]
- Zhang, L.W.; Pang, T.; Zhang, Z.R.; Sun, P.S.; Xia, H.; Wu, B.; Guo, Q.; Sigrist, M.W.; Shu, C.M. A novel compact intrinsic safety full range Methane microprobe sensor using? trans-world? processing method based on near -infrared spectroscopy. Sens. Actuator B-Chem. 2021, 334, 7. [Google Scholar]
- Dang, J.M.; Zhang, J.H.; Dong, X.J.; Kong, L.J.; Yu, H.Y. A trace CH4 detection system based on DAS calibrated WMS technique. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 266, 7. [Google Scholar]
- Sang, J.; Yang, X.Y.; He, T.B.; Li, J.S. High sensitive detection of atmospheric methane using infrared laser absorption spectroscopy. In Proceedings of the 14th National Conference on Laser Technology and Optoelectronics (LTO), Shanghai, China, 17–20 March 2019. [Google Scholar]
- Zhang, T.T.; Zhang, L.; Li, Y.F.; Wei, Y.B.; Wang, Z.W.; Gong, W.H.; Lv, L.; Wang, J.Q.; Liu, T.Y. High Precision Detection Method of Methane in Extreme Environment based on TDLAS. In Proceedings of the 10th International Symposium on Advanced Optical Manufacturing and Testing Technologies-Intelligent Sensing Technologies and Applications, Chengdu, China, 14–17 June 2021. [Google Scholar]
- Zhao, H.; Zheng, C.T.; Pi, M.Q.; Liang, L.; Song, F.; Zhang, Y.; Wang, Y.D.; Tittel, F.K. On-chip mid-infrared silicon-on-insulator waveguide methane sensor using two measurement schemes at 3.291 mu m. Front. Chem. 2022, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Burkle, S.; Walter, N.; Wagner, S. Laser-based measurements of pressure broadening and pressure shift coefficients of combustion-relevant absorption lines in the near-infrared region. Appl. Phys. B-Lasers Opt. 2018, 124, 12. [Google Scholar]
- Tu, R.; Gu, J.Q.; Zeng, Y.; Zhou, X.J.; Yang, K.; Jing, J.J.; Miao, Z.H.; Yang, J.H. Development and Validation of a Tunable Diode Laser Absorption Spectroscopy System for Hot Gas Flow and Small-Scale Flame Measurement. Sensors 2022, 22, 14. [Google Scholar]
- Li, B.; Zheng, C.T.; Liu, H.F.; He, Q.X.; Ye, W.L.; Zhang, Y.; Pan, J.Q.; Wang, Y.D. Development and measurement of a near-infrared CH4 detection system using 1.654 mu m wavelength-modulated diode laser and open reflective gas sensing probe. Sens. Actuator B-Chem. 2016, 225, 188–198. [Google Scholar] [CrossRef]
- Wu, X.; Sang, J.; Zhou, S.; Li, J.S. High sensitivity open-path gas sensor based on a triangular multi-pass cell. Microw. Opt. Technol. Lett. 2021, 63, 2510–2516. [Google Scholar] [CrossRef]
- Mohammad, I.L.; Anderson, G.T.; Chen, Y.H. Noise estimation technique to reduce the effects of 1/f noise in Open Path Tunable Diode Laser Absorption Spectrometry (OP-TDLAS). In Proceedings of the Conference on Sensors for Extreme Harsh Environments, Baltimore, MD, USA, 7–8 May 2014; SPIE—International Society for Optics and Photonics: Baltimore, MD, USA, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Yang, Y.; Shi, Y.; Xu, Y.; Wang, W.; Men, C.; Yang, B. Highly Responsive, Miniaturized Methane Telemetry Sensor Based on Open-Path TDLAS. Photonics 2023, 10, 1281. https://doi.org/10.3390/photonics10111281
Wu Q, Yang Y, Shi Y, Xu Y, Wang W, Men C, Yang B. Highly Responsive, Miniaturized Methane Telemetry Sensor Based on Open-Path TDLAS. Photonics. 2023; 10(11):1281. https://doi.org/10.3390/photonics10111281
Chicago/Turabian StyleWu, Qi, Yuanjin Yang, Yuechun Shi, Yang Xu, Wenlong Wang, Chao Men, and Bingxiong Yang. 2023. "Highly Responsive, Miniaturized Methane Telemetry Sensor Based on Open-Path TDLAS" Photonics 10, no. 11: 1281. https://doi.org/10.3390/photonics10111281
APA StyleWu, Q., Yang, Y., Shi, Y., Xu, Y., Wang, W., Men, C., & Yang, B. (2023). Highly Responsive, Miniaturized Methane Telemetry Sensor Based on Open-Path TDLAS. Photonics, 10(11), 1281. https://doi.org/10.3390/photonics10111281