All-Fiber Pulse-Train Optical Frequency-Domain Interferometer for Dynamic Absolute Distance Measurements of Vibration
Abstract
:1. Introduction
2. Experimental Method
2.1. The Setup of the Pulse-Train OFDI
2.2. The Linear Motion Measurement
2.3. The Comparison Measurement with DISAR
3. Results
3.1. OFDI Signal and Time Synchronization
3.2. Measure Range and Accuracy
3.3. Vibration Measurement
3.3.1. Harmonic Excitation
3.3.2. Anharmonic Periodic Excitation
3.4. Comparison Measurement
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rana, K. Fuzzy control of an electrodynamic shaker for automotive and aerospace vibration testing. Expert Syst. Appl. 2011, 38, 11335–11346. [Google Scholar] [CrossRef]
- Brown, R.; Singh, K.; Khan, F. Fabrication and vibration characterization of electrically triggered shape memory polymer beams. Polym. Test 2017, 61, 74–82. [Google Scholar] [CrossRef]
- Amorebieta, J.; Ortega-Gomez, A.; Durana, G.; Fernández, R.; Antonio-Lopez, E.; Schülzgen, A.; Zubia, J.; Amezcua-Correa, R.; Villatoro, J. Highly sensitive multicore fiber accelerometer for low frequency vibration sensing. Sci. Rep. 2020, 10, 16180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, S.; Jiang, J.; Li, Z.; Yang, H.; Liu, T. A fiber-optic accelerometer based on extrinsic Fabry-Perot interference for low frequency micro-vibration measurement. IEEE Photonics J. 2022, 14, 1–6. [Google Scholar] [CrossRef]
- Wang, W.C.; Hwang, C.H.; Lin, S.Y. Vibration measurement by the time-averaged electronic speckle pattern interferometry methods. Appl. Opt. 1996, 35, 4502–4509. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, B.; Mohan, N.K.; Kothiyal, M.P.; Sirohi, R.S. Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS). Opt. Exp. 2006, 14, 11598–11607. [Google Scholar] [CrossRef]
- Sheng, Z.; Chen, B.; Hu, W.; Yan, K.; Miao, H.; Zhang, Q.; Yu, Q.; Fu, Y. LDV-induced stroboscopic digital image correlation for high spatial resolution vibration measurement. Opt. Exp. 2021, 29, 28134–28147. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, G.; Osten, W.; Gusev, M.E. High-speed digital holographic interferometry for vibration measurement. Appl. Opt. 2006, 45, 3456–3462. [Google Scholar] [CrossRef]
- Na, Y.; Jeon, C.-G.; Ahn, C.; Hyun, M.; Kwon, D.; Shin, J.; Kim, J. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photonics 2020, 14, 355–360. [Google Scholar] [CrossRef]
- Wojtkowski, M.; Kowalczyk, A.; Leitgeb, R.; Fercher, A.F. Full range complex spectral optical coherence tomography technique in eye imaging. Opt. Lett. 2002, 27, 1415–1417. [Google Scholar] [CrossRef]
- Sun, X.; Feng, K.; Cui, J.; Dang, H.; Niu, Y.; Zhang, X. A micro absolute distance measurement method based on dispersion compensated polarized low-coherence interferometry. Sensors 2020, 20, 1168. [Google Scholar] [CrossRef]
- Cusato, L.J.; Cerrotta, S.; Torga, J.R.; Morel, E.N. Extending low-coherence interferometry dynamic range using heterodyne detection. Opt. Laser Eng. 2020, 131, 106106. [Google Scholar] [CrossRef]
- Rothberg, S.J.; Allen, M.S.; Castellini, P.; Di Maio, D.; Dirckx, J.J.J.; Ewins, D.J.; Halkon, B.J.; Muyshondt, P.; Paone, N.; Ryan, T.; et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 2016, 99, 11–22. [Google Scholar] [CrossRef]
- Castellini, P.; Martarelli, M.; Tomasini, E.P. Laser Doppler Vibrometry: Development of advanced solutions answering to technology’s needs. Mech. Syst. Signal Process. 2006, 20, 1265–1285. [Google Scholar] [CrossRef]
- Heydemann, P.L.M. Determination and correction of quadrature fringe measurement errors in interferometers. Appl. Opt. 1981, 20, 3382–3384. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, J.; Kim, Y.; Lee, B.H. Nanometer-Scale Vibration Measurement Using an Optical Quadrature Interferometer based on 3 × 3 Fiber-Optic Coupler. Sensors 2020, 20, 2665. [Google Scholar] [CrossRef]
- Shang, J.; He, Y.; Wang, Q.; Li, Y.; Ren, L. Development of a High-Resolution All-Fiber Homodyne Laser Doppler Vibrometer. Sensors 2020, 20, 5801. [Google Scholar] [CrossRef] [PubMed]
- Mandel, L.; Wolf, E. Spectral coherence and the concept of cross-spectral purity. J. Opt. Soc. Am. 1976, 66, 529–535. [Google Scholar] [CrossRef]
- Gahagan, K.T.; Moore, D.S.; Funk, D.J.; Rabie, R.L.; Buelow, S.J.; Nicholson, J.W. Measurement of shock wave rise times in metal thin film. Phys. Rev. Lett. 2000, 85, 3205–3208. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Tao, T.; Liu, S.; Ma, H.; Wang, X.; Liu, C.; Tan, H. Optical-fiber frequency domain interferometer with nanometer resolution and centimeter measuring range. Rev. Sci. Instrum. 2013, 84, 113103. [Google Scholar] [CrossRef]
- Weng, J.D.; Hua, T.; Wang, X.; Ma, Y.; Hu, S.L.; Wang, X.S. Optical-fiber interferometer for velocity measurements with picosecond resolution. Appl. Phys. Lett. 2006, 89, 4669. [Google Scholar] [CrossRef]
- Ma, H.; Liu, S.; Tao, T.; Chen, L.; Tang, L.; Li, C.; Wu, J.; Jia, X.; Wang, X.; Weng, J. A high-performance ranging method with a long distance range and high accuracy. Optik 2022, 253, 168526. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Liu, C.; Chen, L.; Tang, L.; Tao, T.; Wu, J.; Liu, S.; Jia, X.; Li, C.; Wang, X.; et al. All-Fiber Pulse-Train Optical Frequency-Domain Interferometer for Dynamic Absolute Distance Measurements of Vibration. Photonics 2023, 10, 1342. https://doi.org/10.3390/photonics10121342
Ma H, Liu C, Chen L, Tang L, Tao T, Wu J, Liu S, Jia X, Li C, Wang X, et al. All-Fiber Pulse-Train Optical Frequency-Domain Interferometer for Dynamic Absolute Distance Measurements of Vibration. Photonics. 2023; 10(12):1342. https://doi.org/10.3390/photonics10121342
Chicago/Turabian StyleMa, Heli, Cangli Liu, Long Chen, Longhuang Tang, Tianjiong Tao, Jian Wu, Shenggang Liu, Xing Jia, Chengjun Li, Xiang Wang, and et al. 2023. "All-Fiber Pulse-Train Optical Frequency-Domain Interferometer for Dynamic Absolute Distance Measurements of Vibration" Photonics 10, no. 12: 1342. https://doi.org/10.3390/photonics10121342
APA StyleMa, H., Liu, C., Chen, L., Tang, L., Tao, T., Wu, J., Liu, S., Jia, X., Li, C., Wang, X., & Weng, J. (2023). All-Fiber Pulse-Train Optical Frequency-Domain Interferometer for Dynamic Absolute Distance Measurements of Vibration. Photonics, 10(12), 1342. https://doi.org/10.3390/photonics10121342