Method and Installation for Efficient Automatic Defect Inspection of Manufactured Paper Bowls
Abstract
:1. Introduction
2. Research Methods
2.1. System Architecture
2.2. Image Capture Methods
3. Image Processing Results and Discussion
3.1. Image Processing Method
3.2. Image Processing Procedure
3.3. Defect Inspection Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- A Environmental Protection Agency. Plastic-Reduction Business Boom Worldwide: Chung Hwa Pulp Launch Non-Plastic Pulp-Based Full Product Line. Available online: https://topic.epa.gov.tw/edcs/cp-362-8978-30510-6.html (accessed on 25 December 2020). (In Chinese)
- Babica, M.; Farahania, M.A.; Wuesta, T. Image Based Quality Inspection in Smart Manufacturing Systems: A Literature Review. Prodedia CIRP 2021, 103, 262–267. [Google Scholar] [CrossRef]
- Prinsloo, J.; Sinha, S.; Solms, B.V. A Review of Industry 4.0 Manufacturing Process Security Risks. Appl. Sci. 2019, 9, 5105. [Google Scholar] [CrossRef]
- Taha, E.M.; Emary, E.; Moustafa, K. Automatic Optical Inspection for PCB Manufacturing: A Survey. Int. J. Sci. Eng. Res. 2014, 5, 1095–1102. [Google Scholar]
- Abu Ebayyeh, A.A.R.M.; Mousavi, A. A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry. IEEE Access 2020, 8, 183192–183271. [Google Scholar] [CrossRef]
- Choi, J.; Kim, B.; Jeon, J.Y.; Lee, H.J.; Lim, E.; Rhee, C.E. A Lightweight and Efficient GPU for NDP Utilizing Data Access Pattern of Image Processing. IEEE Trans. Comput. 2022, 71, 13–26. [Google Scholar] [CrossRef]
- Mendoza, Q.A.; Pordesimo, L.; Neilsen, M.; Armstrong, P.; Campbell, J.; Mendoza, P.T. Application of Machine Learning for Insect Monitoring in Grain Facilities. AI 2023, 4, 348–360. [Google Scholar] [CrossRef]
- Moraru, L.; Obreja, C.D.D.; Dey, N.; Ashour, A.S. Chapter 9–Dempster-Shafer Fusion for Effective Retinal Vessels’ Diameter Measurement. In Soft Computing Based Medical Image Analysis; Academic Press: Cambridge, MA, USA, 2018; pp. 149–160. [Google Scholar]
- Cabello, F.; León, J.; Iano, Y.; Arthur, R. Implementation of a fixed-point 2D Gaussian Filter for Image Processing based on FPGA. In Proceedings of the 2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 23–25 September 2015; pp. 28–33. [Google Scholar]
- Vijayarani, S.; Vinupriya, M. Performance Analysis of Canny and Sobel Edge Detection Algorithms in Image Mining. Int. J. Innov. Res. Comput. Commun. Eng. 2013, 1, 1760–1767. [Google Scholar]
- Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K. Exhaustive Search of Correspondences between Multimodal Remote Sensing Images Using Convolutional Neural Network. Sensors 2022, 22, 1231. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, W.A.; Abdul Kader, M.M.M. Binarization of Document Images: A Comprehensive Review. J. Phys. Conf. Ser. 2018, 1019, 12023. [Google Scholar] [CrossRef]
- Mehta, N.; Braun, P.X.; Gendelman, I.; Alibhai, A.Y.; Arya, M.; Duker, J.S.; Waheed, N.K. Repeatability of binarization thresholding methods for optical coherence tomography angiography image quantification. Sci. Rep. 2020, 10, 15368. [Google Scholar] [CrossRef] [PubMed]
- Esquembri, S.; Nieto, J.; Carpeño, A.; Ruiz, M.; Astrain, M.; Costa, V.; Gracia, A. Application of Heterogeneous Computing Techniques for the Development of an Image-Based Hot Spot Detection System Using MTCA. IEEE Trans. Nucl. Sci. 2021, 68, 2151–2158. [Google Scholar] [CrossRef]
- Kim, S.; Yoo, J.; Choi, H.; Seo, J.; Lee, S.; Won, S.M.; Park, J.H.; Heo, K. In-Depth Study of 3D Color-Resist Coating Process for Optically Uniform Image Sensors. IEEE Access 2021, 9, 146525–146532. [Google Scholar] [CrossRef]
- Callens, N.; Gielen, G.G.E. Analysis and Comparison of Readout Architectures and Analog-to-Digital Converters for 3D-Stacked CMOS Image Sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3117–3130. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, J.; Zhang, P. Application of AOI light source modes in multi-chip modules inspection. In Proceedings of the 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, 8–11 August 2018; pp. 141–143. [Google Scholar]
- Peng, D.; Zhang, K.; Liu, Z. Design and Fabrication of Fine-Pitch Pixelated-Addressed Micro-LED Arrays on Printed Circuit Board for Display and Communication Applications. IEEE J. Electron Devices Soc. 2017, 5, 90–94. [Google Scholar] [CrossRef]
- Sim, K.; Yang, J.; Lu, W.; Gao, X. Blind Stereoscopic Image Quality Evaluator Based on Binocular Semantic and Quality Channels. IEEE Trans. Multimed. 2022, 24, 1389–1398. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Jiang, B.; Lu, W.; Gao, X. No-Reference Quality Evaluation of Stereoscopic Video Based on Spatio-Temporal Texture. IEEE Trans. Multimed. 2020, 22, 2635–2644. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, Y.; AbdAlmageed, W.; Natarajan, P. QATM: Quality-Aware Template Matching for Deep Learning. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 11545–11554. [Google Scholar]
- Roh, D.W.; Jeon, J.W. Hardware Architecture Design for Template Matching. In Proceedings of the 2019 International SoC Design Conference (ISOCC), Jeju, Republic of Korea, 6–9 October 2019; pp. 287–288. [Google Scholar]
- Park, C.H.; Kwon, Y.H.; Lee, S.O.; Jung, J.Y. Automated Inspection for Paper Cups Using Deep Learning. J. Korean Soc. Precis. Eng. 2017, 34, 449–453. [Google Scholar] [CrossRef]
- Bing, Z.L. Inspection of the outer packaging quality of paper cups based on machine vision. Comput. CD Softw. Appl. 2012, 10, 56–58. (In Chinese) [Google Scholar]
Sample | Internal (ms) | External (ms) | Bottom (ms) |
---|---|---|---|
1 | 134 | 92 | 94 |
2 | 131 | 94 | 93 |
3 | 133 | 89 | 99 |
4 | 135 | 96 | 95 |
5 | 131 | 92 | 97 |
6 | 135 | 96 | 95 |
7 | 129 | 90 | 93 |
8 | 127 | 98 | 95 |
9 | 132 | 93 | 95 |
10 | 129 | 97 | 91 |
11 | 131 | 90 | 93 |
12 | 134 | 96 | 93 |
13 | 132 | 91 | 100 |
14 | 131 | 96 | 94 |
15 | 132 | 91 | 93 |
16 | 127 | 98 | 90 |
17 | 129 | 91 | 95 |
18 | 136 | 96 | 91 |
19 | 132 | 90 | 94 |
20 | 128 | 95 | 98 |
Average | 131.4 | 93.6 | 94.4 |
Total | 319.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Lee, Y.-H.; Chen, C.-W.; Gao, P.; Xu, Z.; Chen, S.; Yang, C.-F. Method and Installation for Efficient Automatic Defect Inspection of Manufactured Paper Bowls. Photonics 2023, 10, 686. https://doi.org/10.3390/photonics10060686
Yu S, Lee Y-H, Chen C-W, Gao P, Xu Z, Chen S, Yang C-F. Method and Installation for Efficient Automatic Defect Inspection of Manufactured Paper Bowls. Photonics. 2023; 10(6):686. https://doi.org/10.3390/photonics10060686
Chicago/Turabian StyleYu, Shaoyong, Yang-Han Lee, Cheng-Wen Chen, Peng Gao, Zhigang Xu, Shunyi Chen, and Cheng-Fu Yang. 2023. "Method and Installation for Efficient Automatic Defect Inspection of Manufactured Paper Bowls" Photonics 10, no. 6: 686. https://doi.org/10.3390/photonics10060686
APA StyleYu, S., Lee, Y. -H., Chen, C. -W., Gao, P., Xu, Z., Chen, S., & Yang, C. -F. (2023). Method and Installation for Efficient Automatic Defect Inspection of Manufactured Paper Bowls. Photonics, 10(6), 686. https://doi.org/10.3390/photonics10060686