Optical Absorption Coefficient and Refractive-Index Change in a Coupled Quantum Dot-Metallic Nanoparticle Structure
Abstract
:1. Introduction
2. Theory
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OAC | Optical absorption coefficient |
RIC | Refractive-index change |
References
- Cao, E.; Lin, W.; Sun, M.-T.; Liang, W.; Song, Y. Exciton-plasmon coupling interactions: From principle to applications. Nanophotonics 2017, 7, 145. [Google Scholar] [CrossRef]
- Szychowski, B.; Pelton, M.; Daniel, M.-C. Preparation and properties of plasmonic-excitonic nanoparticle assemblies. Nanophotonics 2019, 8, 517. [Google Scholar] [CrossRef]
- Yannopapas, V. Enhancement of nonlinear susceptibilities near plasmonic metamaterials. Opt. Commun. 2010, 283, 1647–1649. [Google Scholar] [CrossRef]
- Evangelou, S.; Yannopapas, V.; Paspalakis, E. Modification of Kerr nonlinearity in a four-level quantum system near a plasmonic nanostructure. J. Mod. Opt. 2014, 61, 1458–1464. [Google Scholar] [CrossRef]
- Ren, J.; Chen, H.; Gu, Y.; Zhao, D.-X.; Zhou, H.; Zhang, J.; Gong, Q. Plasmon-enhanced Kerr nonlinearity via subwavelength-confined anisotropic Purcell factors. Nanotechnology 2016, 27, 425205. [Google Scholar] [CrossRef]
- Terzis, A.F.; Kosionis, S.G.; Boviatsis, J.; Paspalakis, E. Nonlinear optical susceptibilities of semiconductor quantum dot–metal nanoparticle hybrids. J. Mod. Opt. 2016, 63, 451–461. [Google Scholar] [CrossRef]
- Evangelou, S. Modifying the linear and nonlinear optical susceptibilities of coupled quantum dot-metallic nanosphere systems with the Purcell effect. J. Appl. Phys. 2018, 124, 233103. [Google Scholar] [CrossRef]
- Kosionis, S.G.; Paspalakis, E. Control of self-Kerr nonlinearity in a driven coupled semiconductor quantum dot–metal nanoparticle structure. J. Phys. Chem. C 2019, 123, 7308–7317. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, K.-D. Slow light in an artificial hybrid nanocrystal complex. J. Phys. B 2009, 42, 015502. [Google Scholar] [CrossRef]
- Li, J.-B.; Kim, N.-C.; Cheng, M.-T.; Zhou, L.; Hao, Z.-H.; Wang, Q.-Q. Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems. Opt. Express 2012, 20, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.R. Enhancement of the second-harmonic generation in a quantum dot–metallic nanoparticle hybrid system. Nanotechnology 2013, 24, 125701. [Google Scholar] [CrossRef]
- Evangelou, S. Tailoring second-order nonlinear optical effects in coupled quantum dot-metallic nanosphere structures using the Purcell effect. Microelectr. Eng. 2019, 215, 111019. [Google Scholar] [CrossRef]
- Yang, T.; Guo, K.-X. Enhancement of surface plasmon resonances on the nonlinear optical properties in an elliptical quantum dot. J. Opt. Soc. Am. B 2018, 35, 2251–2258. [Google Scholar] [CrossRef]
- Evangelou, S.; Angelis, C.T. Using the Purcell effect for the modification of third-harmonic generation in a quantum dot near a metallic nanosphere. Opt. Commun. 2019, 447, 36–41. [Google Scholar] [CrossRef]
- Carreno, F.; Anton, M.A.; Paspalakis, E. Nonlinear optical rectification and optical bistability in a coupled asymmetric quantum dot-metal nanoparticle hybrid. J. Appl. Phys. 2018, 124, 113107. [Google Scholar] [CrossRef]
- Evangelou, S. Nonlinear optical rectification of a coupled semiconductor quantum dot—Metallic nanosphere system under a strong electromagnetic field. Physica B 2019, 556, 170–174. [Google Scholar] [CrossRef]
- Domenikou, N.; Thanopulos, I.; Yannopapas, V.; Paspalakis, E. Nonlinear Optical Rectification in an Inversion-Symmetry-Broken Molecule Near a Metallic Nanoparticle. Nanomaterials 2022, 12, 1020. [Google Scholar] [CrossRef]
- Sadeghi, S.M. Gain without inversion in hybrid quantum dot–metallic nanoparticle systems. Nanotechnology 2010, 21, 455401. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.M. Ultrafast plasmonic field oscillations and optics of molecular resonances caused by coherent exciton-plasmon coupling. Phys. Rev. A 2013, 88, 013831. [Google Scholar] [CrossRef]
- Anton, M.A.; Carreno, F.; Calderon, O.G.; Melle, S.; Cabrera, E. Radiation emission from an asymmetric quantum dot coupled to a plasmonic nanostructure. J. Opt. 2016, 18, 025001. [Google Scholar] [CrossRef] [Green Version]
- Carreno, F.; Anton, M.A.; Yannopapas, V.; Paspalakis, E. Control of the absorption of a four-level quantum system near a plasmonic nanostructure. Phys. Rev. B 2017, 95, 195410. [Google Scholar] [CrossRef]
- Kosionis, S.G.; Paspalakis, E. Pump-probe optical response of semiconductor quantum dot–metal nanoparticle hybrids. J. Appl. Phys. 2018, 124, 223104. [Google Scholar] [CrossRef]
- Kosionis, S.G.; Paspalakis, E. Controlling the pump-probe optical response in asymmetric tunneling-controlled double quantum dot molecule—Metal nanoparticle hybrids. Appl. Sci. 2021, 11, 11714. [Google Scholar] [CrossRef]
- Karabulut, E.Ö.; Karabulut, I. Pump-probe optical response of a semiconductor quantum dot-metallic nanosphere hybrid system. Europ. Phys. J. Plus 2022, 137, 799. [Google Scholar] [CrossRef]
- Paspalakis, E.; Evangelou, S.; Kosionis, S.G.; Terzis, A.F. Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system. J. Appl. Phys. 2014, 115, 083106. [Google Scholar] [CrossRef]
- Singh, S.K.; Abak, M.K.; Tasgin, M.E. Enhancement of four-wave mixing via interference of multiple plasmonic conversion paths. Phys. Rev. B 2016, 93, 035410. [Google Scholar] [CrossRef] [Green Version]
- Hatef, A.; Singh, M.R. Plasmonic effect on quantum coherence and interference in metallic photonic crystals doped with quantum dots. Phys. Rev. A 2010, 81, 063816. [Google Scholar] [CrossRef]
- Hatef, A.; Sadeghi, S.M.; Singh, M.R. Plasmonic electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems. Nanotechnology 2012, 23, 065701. [Google Scholar] [CrossRef]
- Evangelou, S.; Yannopapas, V.; Paspalakis, E. Transparency and slow light in a four-level quantum system near a plasmonic nanostructure. Phys. Rev. A 2012, 86, 053811. [Google Scholar] [CrossRef]
- Paspalakis, E.; Evangelou, S.; Yannopapas, V.; Terzis, A.F. Phase-dependent optical effects in a four-level quantum system near a plasmonic nanostructure. Phys. Rev. A 2013, 88, 053832. [Google Scholar] [CrossRef]
- Wang, L.; Gu, Y.; Chen, H.; Zhang, J.-Y.; Cui, Y.; Gerardot, B.-D.; Gong, Q.-H. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity. Sci. Rep. 2019, 3, 2879. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-P.; Yu, B.-L. Plasmonic control of refractive index without absorption in metallic photonic crystals doped with quantum dots. Plasmonics 2019, 13, 567–574. [Google Scholar] [CrossRef]
- Unlu, S.; Karabulut, I.; Safak, H. Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Physica E 2006, 33, 319–324. [Google Scholar] [CrossRef]
- Xie, W.-F. Nonlinear optical properties of a hydrogenic donor quantum dot. Phys. Lett. A 2008, 372, 5498–5500. [Google Scholar] [CrossRef]
- Karabulut, I.; Safak, H.; Tomak, M. Excitonic effects on the nonlinear optical properties of small quantum dots. J. Phys. D Appl. Phys. 2008, 41, 155104. [Google Scholar] [CrossRef]
- Sahin, M. Third-order nonlinear optical properties of a one- and two-electron spherical quantum dot with and without a hydrogenic impurity. J. Appl. Phys. 2009, 106, 063710. [Google Scholar] [CrossRef]
- Zeng, Z.; Garoufalis, C.; Terzis, A.F.; Baskoutas, S. Linear and nonlinear optical properties of ZnO/ZnS and ZnS/ZnO core shell quantum dots: Effects of shell thickness, impurity, and dielectric environment. J. Appl. Phys. 2013, 114, 023510. [Google Scholar] [CrossRef]
- Paspalakis, E. Comment on “From fast light to slow light in resonantly driven quantum dot systems” [Opt. Commun. 298–299 (2013) 176–179]. Opt. Commun. 2015, 357, 195–197. [Google Scholar] [CrossRef]
- Niculescu, E.C.; Bejan, D. Nonlinear optical properties of GaAs pyramidal quantum dots. Physica E 2015, 74, 51–58. [Google Scholar] [CrossRef]
- Bejan, D.; Niculescu, E.C. Intense laser effects on the optical properties of asymmetric GaAs double quantum dots under applied electric field. Eur. Phys. J. B 2016, 89, 138. [Google Scholar] [CrossRef]
- Arif, S.M.; Bera, A.; Ghosh, M. Exploring the nonlinear optical properties of impurity doped quantum dots in the light of noise-binding energy interplay. Results Phys. 2019, 13, 102139. [Google Scholar] [CrossRef]
- Baira, M.; Salem, B.; Madhar, N.A.; Ilahi, B. Linear and Nonlinear Intersubband Optical Properties of Direct Band Gap GeSn Quantum Dots. Nanomaterials 2019, 9, 124. [Google Scholar] [CrossRef] [Green Version]
- Kilic, D.G.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I. Impurity-modulated optical response of a disc-shaped quantum dot subjected to laser radiation. Photon. Nanostr. Fund. Appl. 2020, 38, 100748. [Google Scholar] [CrossRef]
- Jiang, X.; Guo, K.-X.; Liu, G.; Yang, T.; Yang, Y.-L. Enhancement of surface plasmon resonances on the nonlinear optical properties in a GaAs quantum dot. Superlatt. Microstruct. 2017, 105, 56–64. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Guo, K.-X.; Yang, T.; Lia, K.; Zhai, W.-J. Enhancement of linear and nonlinear optical absorption coefficients in spherical dome semiconductor nanoshells by surface plasmon resonances. Physica B 2019, 556, 158–162. [Google Scholar] [CrossRef]
- Su, Y.; Guo, K.-X.; Liu, G.-H.; Yang, T.; Yu, Q.-C.; Hu, M.-L.; Yang, Y.-L. Nonlinear optical properties of semiconductor double quantum wires coupled to a quantum-sized metal nanoparticle. Opt. Lett. 2020, 45, 479–482. [Google Scholar] [CrossRef]
- Vladimirova, Y.V.; Klimov, V.V.; Pastukhov, V.M.; Zadkov, V.N. Modification of two-level-atom resonance fluorescence near a plasmonic nanostructure. Phys. Rev. A 2012, 85, 053408. [Google Scholar] [CrossRef]
- Vladimirova, Y.V.; Zadkov, V.N. Quantum optics in nanostructures. Nanomaterials 2021, 11, 1919. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; Chapter 12. [Google Scholar]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: San Diego, CA, USA, 2008; Paragraph 6.3. [Google Scholar]
- Zeng, Z.; Paspalakis, E.; Garoufalis, C.; Terzis, A.F.; Baskoutas, S. Optical susceptibilities in singly charged ZnO colloidal quantum dots embedded in different dielectric matrices. J. Appl. Phys. 2013, 113, 054303. [Google Scholar] [CrossRef]
- Paspalakis, E.; Boviatsis, J.; Baskoutas, S. Effects of probe field intensity in nonlinear optical processes in asymmetric semiconductor quantum dots. J. Appl. Phys. 2013, 114, 153107. [Google Scholar] [CrossRef]
- Kosionis, S.G.; Terzis, A.F.; Yannopapas, V.; Paspalakis, E. Nonlocal effects in energy absorption of coupled quantum dot–metal nanoparticle systems. J. Phys. Chem. C 2012, 116, 23663–23670. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evangelou, S. Optical Absorption Coefficient and Refractive-Index Change in a Coupled Quantum Dot-Metallic Nanoparticle Structure. Photonics 2023, 10, 124. https://doi.org/10.3390/photonics10020124
Evangelou S. Optical Absorption Coefficient and Refractive-Index Change in a Coupled Quantum Dot-Metallic Nanoparticle Structure. Photonics. 2023; 10(2):124. https://doi.org/10.3390/photonics10020124
Chicago/Turabian StyleEvangelou, Sofia. 2023. "Optical Absorption Coefficient and Refractive-Index Change in a Coupled Quantum Dot-Metallic Nanoparticle Structure" Photonics 10, no. 2: 124. https://doi.org/10.3390/photonics10020124
APA StyleEvangelou, S. (2023). Optical Absorption Coefficient and Refractive-Index Change in a Coupled Quantum Dot-Metallic Nanoparticle Structure. Photonics, 10(2), 124. https://doi.org/10.3390/photonics10020124