Holographic Writing of Forked Diffraction Gratings on the Surface of a Chalcogenide Glass Semiconductor
Abstract
:1. Introduction
2. Theoretical Analysis
3. Experimental
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porfirev, A.P.; Kuchmizhak, A.A.; Gurbatov, S.O.; Juodkazis, S.; Khonina, S.N.; Kul’chin, Y.N. Phase singularities and optical vortices in photonics. Phys. Uspekhi 2022, 65, 789–811. [Google Scholar] [CrossRef]
- Chen, J.; Wan, C.; Zhan, Q. Engineering photonic angular momentum with structured light: A review. Adv. Photonics 2021, 3, 064001. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 2015, 7, 66–106. [Google Scholar] [CrossRef] [Green Version]
- Porfirev, A.P.; Kirilenko, M.S.; Khonina, S.N.; Skidanov, R.V.; Soifer, V.A. Study of propagation of vortex beams in aerosol optical medium. Appl. Opt. 2017, 56, E8–E15. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Karpeev, S.V.; Paranin, V.D. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Opt. Lasers Eng. 2018, 105, 68–74. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, F.; Lan, B.; Tang, A. Mode-dependent crosstalk and detection probability of orbital angular momentum of optical vortex beam through atmospheric turbulence. J. Opt. 2020, 22, 075607. [Google Scholar] [CrossRef]
- Yang, C.; Lan, Y.; Jiang, X.; Long, H.; Hou, J.; Chen, S. Beam-holding property analysis of the perfect optical vortex beam transmitting in atmospheric turbulence. Opt. Commun. 2020, 472, 125879. [Google Scholar] [CrossRef]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Lamperska, W.; Masajada, J.; Drobczyński, V.; Wasylczyk, P. Optical vortex torque measured with optically trapped microbarbells. Appl. Opt. 2020, 59, 4703–4707. [Google Scholar] [CrossRef]
- Bobkova, V.; Stegemann, J.; Droop, R.; Otte, E.; Denz, C. Optical grinder: Sorting of trapped particles by orbital angular momentum. Opt. Express 2021, 29, 12967–12975. [Google Scholar] [CrossRef]
- Skidanov, R.V.; Khonina, S.N.; Kotlyar, V.V. Optical micromanipulation using a binary dynamic light modulator. Comput. Opt. 2008, 32, 361–365. [Google Scholar]
- Forbes, A.; Dudley, A.; McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics 2016, 8, 200–227. [Google Scholar] [CrossRef]
- Khonina, S.N.; Karpeev, S.V.; Butt, M.A. Spatial-light-modulator-based multichannel data transmission by vortex beams of various orders. Sensors 2021, 21, 2988. [Google Scholar] [CrossRef] [PubMed]
- Fadeyeva, T.A.; Shvedov, V.G.; Izdebskaya, Y.V.; Volyar, A.V.; Brasselet, E.; Neshev, D.N.; Desyatnikov, A.S.; Krolikowski, W.; Kivshar, Y.S. Spatially engineered polarization states and optical vortices in uniaxial crystals. Opt. Express 2010, 18, 10848–10863. [Google Scholar] [CrossRef] [Green Version]
- Khonina, S.N.; Morozov, A.A.; Karpeev, S.V. Effective transformation of a zero-order Bessel beam into a second-order vortex beam using a uniaxial crystal. Laser Phys. 2014, 24, 056101. [Google Scholar] [CrossRef]
- Khonina, S.N.; Porfirev, A.P.; Kazanskiy, N.L. Variable transformation of singular cylindrical vector beams using anisotropic crystal. Sci. Rep. 2020, 10, 5590. [Google Scholar] [CrossRef] [Green Version]
- Piłka, J.; Kwaśny, M.; Filipkowski, A.; Buczyński, R.; Karpierz, M.A.; Laudyn, U.A. A Gaussian to Vector Vortex Beam Generator with a Programmable State of Polarization. Materials 2022, 15, 7794. [Google Scholar] [CrossRef]
- Bazhenov, V.Y.; Vasnetsov, M.; Soskin, M. Laser beams with screw dislocations in their wavefronts. JETP Lett. 1991, 52, 429–431. [Google Scholar]
- Khonina, S.N.; Skidanov, R.V.; Kotlyar, V.V.; Soifer, V.A.; Turunen, J. DOE-generated laser beams with given orbital angular moment: Application for micromanipulation. Proc. SPIE Int. Soc. Opt. Eng. 2005, 5962, 59622W. [Google Scholar]
- Moreno, I.; Davis, J.A.; Pascoguin, B.M.L.; Mitry, M.J.; Cottrell, D.M. Vortex sensing diffraction gratings. Opt. Lett. 2009, 34, 2927. [Google Scholar] [CrossRef]
- Stoyanov, L.; Topuzoski, S.; Stefanov, I.; Janicijevic, L.; Dreischuh, A. Farfield diffraction of an optical vortex beam by a fork-shaped grating. Opt. Commun. 2015, 350, 301. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Karpeev, S.V.; Porfirev, A.P. Diffractive optical elements for multiplexing structured laser beams. Quantum Electron. 2020, 50, 629–635. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, X.; Niu, L.; Wang, K.; Yang, Z.; Liu, J. Generating terahertz perfect optical vortex beams by diffractive elements. Opt. Express 2020, 28, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.; Wen, D.; Xin, J.; Gerardot, B.D.; Li, J.; Chen, X. Vector vortex beam generation with a singleplasmonicmetasurface. ACS Photonics 2016, 3, 1558. [Google Scholar] [CrossRef]
- Degtyarev, S.A.; Volotovsky, S.G.; Khonina, S.N. Sublinearly chirped metalenses for forming abruptly autofocusing cylindrically polarized beams. J. Opt. Soc. Am. B 2018, 35, 1963–1969. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Gao, J.; Yang, X. Generating focused 3D perfect vortex beams by plasmonicmetasurfaces. Adv. Opt. Mater. 2018, 6, 1701228. [Google Scholar] [CrossRef]
- Ahmed, H.; Rahim, A.A.; Maab, H.; Ali, M.M.; Mahmood, N.; Naureen, S. Phase engineering with all-dielectric metasurfaces for focused-optical-vortex micro-objective (FOV) beams with high cross-polarization efficiency. Opt. Mater. Express 2020, 10, 434–448. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhang, S.; Pu, M.; He, Q.; Jin, J.; Xu, M.; Zhang, X.Y.; Gao, P.; Luo, X. Spin-decoupled metasurface for simultaneous detection of spin and orbitalangular momenta via momentum transformation. Light-Sci. Appl. 2021, 10, 63. [Google Scholar] [CrossRef]
- Ahmed, H.; Rahim, A.A.; Maab, H.; Ali, M.M.; Mahmood, N.; Naureen, S. Highly Efficient PerfectVortex Beams Generation Based on All-Dielectric Metasurface for Ultraviolet Light. Nanomaterials 2022, 12, 3285. [Google Scholar] [CrossRef]
- Fatkhiev, D.M.; Butt, M.A.; Grakhova, E.P.; Kutluyarov, R.V.; Stepanov, I.V.; Kazanskiy, N.L.; Khonina, S.N.; Lyubopytov, V.S.; Sultanov, A.K. Recent advances in generation and detection of orbital angular momentum optical beams—A review. Sensors 2021, 21, 4988. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Lv, H.; Fu, X.; Yang, Y. Vortex beam: Generation and detection of orbital angular momentum. Chin. Opt. Lett. 2022, 20, 012601. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Khonina, S.N.; Khorin, P.A.; Ivliev, N.A. Polarization-sensitive direct laser patterning of azopolymer thin films with vortex beams. Opt. Lett. 2022, 47, 5080–5083. [Google Scholar] [CrossRef]
- Porfirev, A.; Khonina, S.; Ivliev, N.; Meshalkin, A.; Achimova, E. Writing and reading with the longitudinal component of light using carbazole-containing azopolymer thin films. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef]
- Cazac, V.; Achimova, E.; Abashkin, V.; Prisacar, A.; Loshmanschii, C.; Meshalkin, A.; Egiazarian, K. Polarization holographic recording of vortex diffractive optical elements on azopolymer thin films and 3D analysis via phase-shifting digital holographic microscopy. Opt. Express 2021, 29, 9217–9230. [Google Scholar] [CrossRef] [PubMed]
- Ivliev, N.A.; Podlipnov, V.V.; Khonina, S.N.; Meshalkin, A.Y.; Akimova, E.A. Single- and Double-Beam Optical Formation of Relief-Phase Diffraction Microstructures in Carbazole-Containing Azopolymer Films. Opt. Spectrosc. 2021, 129, 489–494. [Google Scholar] [CrossRef]
- Achimova, E.; Stronski, A.; Abaskin, V.; Meshalkin, A.; Paiuk, A.; Prisacar, A.; Oleksenko, P.; Triduh, G. Direct surface relief formation on As2S3-Se nanomultilayers in dependence on polarization states of recording beams. Opt. Mater. 2015, 47, 566–572. [Google Scholar] [CrossRef]
- Porfirev, A.; Khonina, S.; Meshalkin, A.; Ivliev, N.; Achimova, E.; Abashkin, V.; Prisacar, A.; Podlipnov, V. Two-step maskless fabrication of compound fork-shaped gratings in nanomultilayer structures based on chalcogenide glasses. Opt. Lett. 2021, 46, 3037–3040. [Google Scholar] [CrossRef]
- Abashkin, V.; Achimova, E.; Kryskov Ts Meshalkin, A.; Prisacar, A.; Triduh, G.; Vlcek, M. Investigation of Optical Properties of As2S3–Se Nanomultilayers. In Proceedings of the 2nd International Conference of Nanotechnologies and Biomedical Engineering, Chisinau, Republic of Moldova, 18–20 April 2013; pp. 254–257. [Google Scholar]
- Meshalkin, A.; Losmanschii, C.; Prisacar, A.; Achimova, E.; Abashkin, V.; Pogrebnoi, S.; Macaev, F. Carbazole-based azopolymers as media for polarization holographic recording. Adv. Phys. Res. 2019, 1, 86–98. [Google Scholar]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A Math. Phys. Sci. 1959, 253, 358–379. [Google Scholar]
- Khonina, S.N.; Ustinov, A.V. Focusing of shifted vortex beams of arbitrary order with differentpolarization. Opt. Commun. 2018, 426, 359–365. [Google Scholar] [CrossRef]
- Wong, V.; Ratner, M.A. Explicit computation of gradient and nongradient contributions to optical forces in the discretedipole approximation. J. Opt. Soc. A B 2006, 23, 1801–1814. [Google Scholar] [CrossRef]
- Wong, V.; Ratner, M.A. Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles. Phys. Rev. B 2006, 73, 075416. [Google Scholar] [CrossRef]
- Bian, S.; Williams, J.M.; Kim, D.Y.; Li, L.; Balasubramanian, S.; Kumar, J.; Tripathy, S. Photoinduced surface deformations on azobenzene polymer films. J. Appl. Phys. 1999, 86, 4498–4508. [Google Scholar] [CrossRef]
- Ambrosio, A.; Marrucci, L.; Borbone, F.; Roviello, A.; Maddalena, P. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nat. Commun. 2012, 3, 989. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Volotovskiy, S.G.; Ivliev, N.A.; Podlipnov, V.V. Influence of optical forces induced by paraxial vortex Gaussian beams on the formation of a microrelief on carbazole-containing azopolymerfilms. Appl. Opt. 2020, 59, 9185–9194. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Allen, L.; Van der Veen HE, L.O.; Woerdman, J.P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 1993, 96, 123–132. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Porfirev, A.P. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl. Opt. 2017, 56, 4095–4104. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Khonina, S.N. Astigmatic transformation of optical vortex beams with high-order cylindrical polarization. J. Opt. Soc. Am. B 2019, 36, 2193–2201. [Google Scholar] [CrossRef]
- Khorin, P.A.; Khonina, S.N.; Porfirev, A.P.; Kazanskiy, N.L. Simplifying the experimental detection of the vortex topological charge based on the simultaneous astigmatic transformation of several types and levels in the same focal plane. Sensors 2022, 22, 7365. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Gao, J. Generation of polarization singularities with geometric metasurfaces. Sci. Rep. 2019, 9, 19656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yang, X.; Gao, J. Generation of nondiffracting vector beams with ring-shaped plasmonic metasurfaces. Phys. Rev. Appl. 2019, 11, 064059. [Google Scholar] [CrossRef]
- Lin, A.; Wang, J.; Chen, Y.; Qi, P.; Huang, Z.; Tan, X. Reconstruction characters of conventional holography using polarization-sensitive material. Appl. Opt. 2022, 61, 3134–3140. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Lu, L.; Yaroshchuk, O.; Bos, P. Closer look at transmissive polarization volume holograms: Geometry, physics, and experimental validation. Appl. Opt. 2021, 60, 580–592. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivliev, N.A.; Khonina, S.N.; Podlipnov, V.V.; Karpeev, S.V. Holographic Writing of Forked Diffraction Gratings on the Surface of a Chalcogenide Glass Semiconductor. Photonics 2023, 10, 125. https://doi.org/10.3390/photonics10020125
Ivliev NA, Khonina SN, Podlipnov VV, Karpeev SV. Holographic Writing of Forked Diffraction Gratings on the Surface of a Chalcogenide Glass Semiconductor. Photonics. 2023; 10(2):125. https://doi.org/10.3390/photonics10020125
Chicago/Turabian StyleIvliev, Nikolay A., Svetlana N. Khonina, Vladimir V. Podlipnov, and Sergey V. Karpeev. 2023. "Holographic Writing of Forked Diffraction Gratings on the Surface of a Chalcogenide Glass Semiconductor" Photonics 10, no. 2: 125. https://doi.org/10.3390/photonics10020125
APA StyleIvliev, N. A., Khonina, S. N., Podlipnov, V. V., & Karpeev, S. V. (2023). Holographic Writing of Forked Diffraction Gratings on the Surface of a Chalcogenide Glass Semiconductor. Photonics, 10(2), 125. https://doi.org/10.3390/photonics10020125