Generation of Vector Vortex Beams Based on the Optical Integration of Dynamic Phase and Geometric Phase
Abstract
:1. Introduction
2. Optical Integration of Dynamic Phase and Geometric Phase
3. Generation of Vector Vortex Beams
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Hasman, E.; Biener, G.; Niv, A.; Kleiner, V. Space-variant polarization manipulation. Prog. Opt. 2005, 47, 215–289. [Google Scholar] [CrossRef]
- Zhan, Q. Cylindrical vector beams: From mathematical concepts to applications. Adv. Opt. Photonics 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Liu, S.; Ma, C.; Han, L.; Cheng, H.; Zhao, J. Generation of perfect vectorial vortex beams. Opt. Lett. 2016, 41, 2205–2208. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Gu, B.; Rui, G.; Zhan, Q.; Cui, Y. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors. Opt. Express 2016, 24, 4177–4186. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Zhai, Y.; Wang, T.; Yin, C.; Gao, C. Tailoring arbitrary hybrid Poincaré beams through a single hologram. Appl. Phys. Lett. 2017, 111, 211101. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, Q.; Yang, Y. Generation of Tunable Plasmonic Vortices by Varying Wavelength of Incident Light. Photonics 2022, 9, 809. [Google Scholar] [CrossRef]
- Chen, H.; Hao, J.; Zhang, B.-F.; Xu, J.; Ding, J.; Wang, H.-T. Generation of vector beam with space-variant distribution of both polarization and phase. Opt. Lett. 2011, 36, 3179–3181. [Google Scholar] [CrossRef] [Green Version]
- Galvez, E.J.; Khadka, S.; Schubert, W.H.; Nomoto, S. Poincaré-beam patterns produced by nonseparable superpositions of Laguerre–Gauss and polarization modes of light. Appl. Opt. 2012, 51, 2925–2934. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhou, X.; Liu, Y.; Ling, X.; Luo, H.; Wen, S. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Opt. Lett. 2014, 39, 5274–5276. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zeng, T.; Qian, B.; Ding, J. Complete shaping of optical vector beams. Opt. Express 2015, 23, 17701–17710. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, J.; Wang, F.; Liu, L.; Zhao, C.; Cai, Y.; Korotkova, O. Generation and propagation of a partially coherent vector beam with special correlation functions. Phys. Rev. A 2014, 89, 013801. [Google Scholar] [CrossRef]
- Stalder, M.; Schadt, M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt. Lett. 1996, 21, 1948. [Google Scholar] [CrossRef] [PubMed]
- Bomzon, Z.; Biener, G.; Kleiner, V.; Hasman, E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett. 2002, 27, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Marrucci, L.; Manzo, C.; Paparo, D. Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media. Phys. Rev. Lett. 2006, 96, 163905. [Google Scholar] [CrossRef] [Green Version]
- Deng, D.; Guo, Q. Analytical vectorial structure of radially polarized light beams. Opt. Lett. 2007, 32, 2711. [Google Scholar] [CrossRef]
- Beresna, M.; Gecevičius, M.; Kazansky, P.G.; Gertus, T. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 2011, 98, 201101. [Google Scholar] [CrossRef]
- Chen, P.; Ji, W.; Wei, B.-Y.; Hu, W.; Chigrinov, V.; Lu, Y.-Q. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates. Appl. Phys. Lett. 2015, 107, 241102. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, D.; Roux, F.S.; Dudley, A.; Litvin, I.; Piccirillo, B.; Marrucci, L.; Forbes, A. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics 2016, 10, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-López, M.M.; Davis, J.A.; Hashimoto, N.; Moreno, I.; Hurtado, E.; Badham, K.; Tanabe, A.; Delaney, S.W. Performance of a q-plate tunable retarder in reflection for the switchable generation of both first- and second-order vector beams. Opt. Lett. 2016, 41, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Yue, F.; Wen, D.; Xin, J.; Gerardot, B.D.; Li, J.; Chen, X. Vector Vortex Beam Generation with a Single Plasmonic Metasurface. ACS Photonics 2016, 3, 1558–1563. [Google Scholar] [CrossRef]
- Rafayelyan, M.; Gertus, T.; Brasselet, E. Laguerre-Gaussian quasi-modal q-plates from nanostructured glasses. Appl. Phys. Lett. 2017, 110, 261108. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Liu, X.; Fu, S.; Gao, C. Simultaneous tailoring of longitudinal and transverse mode inside an Er: YAG laser. Chin. Opt. Lett. 2021, 19, 111404. [Google Scholar] [CrossRef]
- Fu, S.; Hai, L.; Song, R.; Gao, C.; Zhang, X. Representation of total angular momentum states of beams through a four-parameter notation. New J. Phys. 2021, 23, 083015. [Google Scholar] [CrossRef]
- Abouraddy, A.F.; Toussaint, K.C., Jr. Three-Dimensional Polarization Control in Microscopy. Phys. Rev. Lett. 2006, 96, 153901. [Google Scholar] [CrossRef] [PubMed]
- Roxworthy, B.J.; Toussaint, K.C., Jr. Optical trapping with π-phase cylindrical vector beams. New J. Phys. 2010, 12, 073012. [Google Scholar] [CrossRef]
- Wang, B.; Tanksalvala, M.; Zhang, Z.; Esashi, Y.; Jenkins, N.W.; Murnane, M.M.; Kapteyn, H.C.; Liao, C. Coherent Fourier scatterometry using orbital angular momentum beams for defect detection. Opt. Express 2021, 29, 3342–3358. [Google Scholar] [CrossRef]
- Parigi, V.; D’Ambrosio, V.; Arnold, C.; Marrucci, L.; Sciarrino, F.; Laurat, J. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun. 2015, 6, 7706. [Google Scholar] [CrossRef] [Green Version]
- Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 2011, 107, 053601. [Google Scholar] [CrossRef]
- Holleczek, A.; Aiello, A.; Gabriel, C.; Marquardt, C.; Leuchs, G. Classical and quantum properties of cylindrically polarized states of light. Opt. Express 2011, 19, 9714–9736. [Google Scholar] [CrossRef] [Green Version]
- Milione, G.; Evans, S.; Nolan, D.A.; Alfano, R.R. Higher Order Pancharatnam-Berry Phase and the Angular Momentum of Light. Phys. Rev. Lett. 2012, 108, 190401. [Google Scholar] [CrossRef] [Green Version]
- Cardano, F.; Karimi, E.; Slussarenko, S.; Marrucci, L.; de Lisio, C.; Santamato, E. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt. 2012, 51, C1–C6. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Liu, Y.; Ling, X.; Zhou, X.; Ke, Y.; Luo, H.; Wen, S. Hybrid-order Poincaré sphere. Phys. Rev. A 2015, 91, 023801. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, Z.; Zhou, J.; Ling, X.; Shu, W.; Luo, H.; Wen, S. Measurements of Pancharatnam–Berry phase in mode transformations on hybrid-order Poincaré sphere. Opt. Lett. 2017, 42, 3447–3450. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; He, S.; Chen, S.; Zhang, J.; Shu, W.; Luo, H.; Wen, S. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere. Opt. Lett. 2018, 43, 3570–3573. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, Y.; Ke, Y.; Liu, Y.; Shu, W.; Luo, H.; Wen, S. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere. Photon. Res. 2017, 5, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhang, Z.; Cao, A.; Luo, X.; Deng, Q. One exposure processing to fabricate spiral phase plate with continuous surface. Opt. Express 2015, 23, 8620–8629. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, Z.; Liu, Y.; Zhou, J.; Ke, Y.; Luo, H.; Wen, S. Higher-order laser mode converters with dielectric metasurfaces. Opt. Lett. 2015, 40, 5506–5509. [Google Scholar] [CrossRef] [PubMed]
- Beresna, M.; Gecevičius, M.; Kazansky, P. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass. Opt. Mater. Express 2011, 1, 783–795. [Google Scholar] [CrossRef]
- Liu, Y.; Ling, X.; Yi, X.; Zhou, X.; Luo, H.; Wen, S. Realization of polarization evolution on higher-order Poincaré sphere with metasurface. Appl. Phys. Lett. 2014, 104, 191110. [Google Scholar] [CrossRef] [Green Version]
- Ling, X.; Zhou, X.; Yi, X.; Shu, W.; Liu, Y. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci. Appl. 2015, 4, e290. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Qian, H.; Hu, G.; Luo, H.; Wen, S.; Liu, Z. Broadband Photonic Spin Hall Meta-Lens. ACS Nano 2018, 12, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Qian, H.; Chen, C.-F.; Zhao, J.; Li, G.; Wu, Q.; Luo, H.; Wen, S.; Liu, Z. Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl. Acad. Sci. USA 2019, 116, 11137–11140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Liu, S.; Qian, H.; Li, Y.; Luo, H.; Wen, S.; Zhou, Z.; Guo, G.; Shi, B.; Liu, Z. Metasurface enabled quantum edge detection. Sci. Adv. 2020, 6, eabc4385. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Qian, H.; Zhao, J.; Tang, M.; Wu, Q.; Lei, M.; Luo, H.; Wen, S.; Chen, S.; Liu, Z. Two-dimensional optical spatial differentiation and high-contrast imaging. Natl. Sci. Rev. 2021, 8, nwaa176. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, S.; Wen, S.; Luo, H. Photonic spin Hall effect: Fundamentals and emergent applications. Opto-Electron. Sci. 2022, 1, 220007. [Google Scholar] [CrossRef]
- He, S.; Wang, R.; Luo, H. Computing metasurfaces for all-optical image processing: A brief review. Nanophotonics 2022, 11, 1083–1108. [Google Scholar] [CrossRef]
- Karimi, E.; Piccirillo, B.; Marrucci, L.; Santamato, E. Light propagation in a birefringent plate with topological charge. Opt. Lett. 2009, 34, 1225–1227. [Google Scholar] [CrossRef] [Green Version]
- Shu, W.; Liu, Y.; Ke, Y.; Ling, X.; Liu, Z.; Huang, B.; Luo, H.; Yin, X. Propagation model for vector beams generated by metasurfaces. Opt. Express 2016, 24, 21177–21189. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, K.; He, S.; Wang, X.; Luo, H. Generation of Vector Vortex Beams Based on the Optical Integration of Dynamic Phase and Geometric Phase. Photonics 2023, 10, 214. https://doi.org/10.3390/photonics10020214
Zeng K, He S, Wang X, Luo H. Generation of Vector Vortex Beams Based on the Optical Integration of Dynamic Phase and Geometric Phase. Photonics. 2023; 10(2):214. https://doi.org/10.3390/photonics10020214
Chicago/Turabian StyleZeng, Kuiming, Shanshan He, Xianping Wang, and Hailu Luo. 2023. "Generation of Vector Vortex Beams Based on the Optical Integration of Dynamic Phase and Geometric Phase" Photonics 10, no. 2: 214. https://doi.org/10.3390/photonics10020214
APA StyleZeng, K., He, S., Wang, X., & Luo, H. (2023). Generation of Vector Vortex Beams Based on the Optical Integration of Dynamic Phase and Geometric Phase. Photonics, 10(2), 214. https://doi.org/10.3390/photonics10020214