Two-State Lasing in Microdisk Laser Diodes with Quantum Dot Active Region
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Spectral Analysis of Microdisk Lasers
3.2. Threshold Current Density of Microdisk Lasers
3.3. Broad Area Lasers
3.4. Comparison of BA and Microdisk Lasers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCall, S.L.; Levi, A.F.G.; Slusher, R.E.; Pearton, S.J.; Logan, R.A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 1992, 60, 289–291. [Google Scholar] [CrossRef]
- Wong, W.W.; Jagadish, C.; Tan, H.H. III–V semiconductor whispering-gallery mode microcavity lasers: Advances and prospects. IEEE J. Quantum Electron. 2022, 58, 2000618. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Kryzhanovskaya, N.V.; Moiseev, E.I.; Maximov, M.V. Quantum-dot microlasers based on whispering gallery mode resonators. Light Sci. Appl. 2021, 10, 80. [Google Scholar] [CrossRef]
- Kryzhanovskaya, N.V.; Moiseev, E.I.; Kudashova, Y.V.; Zubov, F.I.; Lipovskii, A.A.; Kulagina, M.M.; Troshkov, S.I.; Zadiranov, Y.M.; Lifshits, D.A.; Maximov, M.V.; et al. Continuous-wave lasing at 100 °C in 1.3 µm quantum dot microdisk diode laser. Electron. Lett. 2015, 51, 1354–1355. [Google Scholar] [CrossRef]
- Wan, Y.; Norman, J.; Li, Q.; Kennedy, M.J.; Liang, D.; Zhang, C.; Huang, D.; Zhang, Z.; Liu, A.Y.; Torres, A.; et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica 2017, 4, 940–944. [Google Scholar] [CrossRef] [Green Version]
- Kryzhanovskaya, N.; Moiseev, E.; Polyubavkina, Y.; Maximov, M.; Kulagina, M.; Troshkov, S.; Zadiranov, Y.; Guseva, Y.; Lipovskii, A.; Tang, M.; et al. Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3 μm. Opt. Lett. 2017, 42, 3319–3322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-H.; Mochida, R.; Tanabe, K.; Takemasa, K.; Sugawara, M.; Iwamoto, S.; Arakawa, Y. Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C. Opt. Express 2016, 24, 18428–18435. [Google Scholar]
- Zhukov, A.E.; Kryzhanovskaya, N.V.; Moiseev, E.I.; Dragunova, A.S.; Tang, M.; Chen, S.; Liu, H.; Kulagina, M.M.; Kadinskaya, S.A.; Zubov, F.I.; et al. InAs/GaAs quantum dot microlasers formed on silicon using monolithic and hybrid integration methods. Materials 2020, 13, 2315. [Google Scholar] [CrossRef]
- Zubov, F.I.; Moiseev, E.I.; Nadtochiy, A.M.; Fominykh, N.A.; Ivanov, K.A.; Makhov, I.S.; Dragunova, A.S.; Maximov, M.V.; Vorobyev, A.A.; Mozharov, A.M.; et al. Improvement of thermal resistance in InGaAs/GaAs/AlGaAs microdisk lasers bonded onto silicon. Semicond. Sci. Technol. 2022, 37, 075010. [Google Scholar] [CrossRef]
- Zubov, F.; Maximov, M.; Kryzhanovskaya, N.; Moiseev, E.; Muretova, M.; Mozharov, A.; Kalyuzhnyy, N.; Mintairov, S.; Kulagina, M.; Ledentsov, N.; et al. High speed data transmission using directly modulated microdisk lasers based on InGaAs/GaAs quantum well-dots. Opt. Lett. 2019, 44, 5442–5445. [Google Scholar] [CrossRef]
- Wan, Y.; Inoue, D.; Jung, D.; Norman, J.C.; Shang, C.; Gossard, A.C.; Bowers, J.E. Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability. Photonics Res. 2018, 6, 776–781. [Google Scholar] [CrossRef]
- Markus, A.; Chen, J.X.; Paranthoën, C.; Fiore, A.; Platz, C.; Gauthier-Lafaye, O. Simultaneous two-state lasing in quantum-dot lasers. Appl. Phys. Lett. 2003, 82, 1818–1820. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Kovsh, A.R.; Livshits, D.A.; Ustinov, V.M.; Alferov, Z.I. Output power and its limitation in ridge-waveguide 1.3 mum wavelength quantum-dot lasers. Semicond. Sci. Technol. 2003, 18, 774–781. [Google Scholar] [CrossRef]
- Kovsh, A.; Krestnikov, I.; Livshits, D.; Mikhrin, S.; Weimert, J.; Zhukov, A. Quantum dot laser with 75-nm-broad spectrum of emission. Optics Lett. 2007, 32, 793–795. [Google Scholar] [CrossRef]
- Kovsh, A.; Gubenko, A.; Krestnikov, I.; Livshits, D.; Mikhrin, S.; Weimert, J.; West, L.; Wojcik, G.; Yin, D.; Bornholdt, C.; et al. Quantum dot comb-laser as efficient light source for silicon photonics. In Silicon Photonics and Photonic Integrated Circuits; SPIE: Bellingham, WA, USA, 2008; Volume 6996, p. 69960V. [Google Scholar]
- Tykalewicz, B.; Goulding, D.; Hegarty, S.P.; Huyet, G.; Byrne, D.; Phelan, R.; Kelleher, B. All-optical switching with a dual-state, single-section quantum dot laser via optical injection. Optics Lett. 2014, 39, 4607–4610. [Google Scholar] [CrossRef]
- Maximov, M.V.; Shernyakov, Y.M.; Gordeev, N.Y.; Nadtochiy, A.M.; Zhukov, A.E. Information encoding using two-level generation in a quantum dot laser. Pis’ma v JTF (in Russian) 2023, 49, 18. [Google Scholar]
- Maximov, M.V.; Shernyakov, Y.M.; Zubov, F.I.; Zhukov, A.E.; Gordeev, N.Y.; Korenev, V.V.; Savelyev, A.V.; Livshits, D.A. The influence of p-doping on two-state lasing in InAs/InGaAs quantum dot lasers. Semicond. Sci. Techol. 2013, 28, 105016. [Google Scholar] [CrossRef]
- Markus, A.; Rossetti, M.; Calligari, V.; Chek-Al-Kar, D.; Chen, J.X.; Fiore, A. Two-state switching and dynamics in quantum dot two-section lasers. J. Appl. Phys. 2006, 100, 113104. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D. Double-state lasing from semiconductor quantum dot laser diodes caused by slow carrier relaxation. J. Korean Phys. Soc. 2011, 58, 239–242. [Google Scholar] [CrossRef]
- Korenev, V.V.; Savelyev, A.V.; Zhukov, A.E.; Omelchenko, A.V.; Maximov, M.V. Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers. Semicond. 2013, 47, 1397–1404. [Google Scholar] [CrossRef]
- Zhou, Y.; Duan, J.; Grillot, F.; Wang, C. Optical noise of dual-state lasing quantum dot lasers. IEEE J. Quantum Electron. 2020, 56, 9204736. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, L.; Asryan, L.V. Output power of a quantum dot laser: Effects of excited states. J. Appl. Phys. 2015, 118, 183107. [Google Scholar] [CrossRef] [Green Version]
- Zhukov, A.E.; Kryzhanovskaya, N.V.; Maximov, M.V.; Lipovskii, A.A.; Savelyev, A.V.; Bogdanov, A.A.; Shostak, I.I.; Moiseev, E.I.; Karpov, D.V.; Laukkanene, J.; et al. Lasing in microdisks of ultrasmall diameter. Semicond. 2014, 48, 1626–1630. [Google Scholar] [CrossRef]
- Talalaev, V.; Kryzhanovskaya, N.V.; Tomm, J.W.; Rutckaia, V.; Schilling, J.; Zhukov, A. Dynamics of broadband lasing cascade from a single dot-in-well InGaAs microdisk. Sci. Rep. 2019, 9, 5635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viktorov, E.A.; Mandel, P.; Tanguy, Y.; Houlihan, J.; Huyet, G. Electron-hole asymmetry and two-state lasing in quantum dot lasers. Appl. Phys. Lett. 2005, 87, 053113. [Google Scholar] [CrossRef] [Green Version]
- Korenev, V.V.; Savelyev, A.V.; Zhukov, A.E.; Omelchenko, A.V.; Maximov, M.V. Analytical approach to the multi-state lasing phenomenon in quantum dot lasers. Appl. Phys. Lett. 2013, 102, 112101. [Google Scholar] [CrossRef]
- Coldren, L.A.; Corzine, S.W.; Mašanović, M.L. Diode Lasers and Photonic Integrated Circuits, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 199–218. [Google Scholar]
- Fiore, A.; Rossetti, M.; Alloing, B.; Paranthoën, C.; Chen, J.X.; Geelhaar, L.; Riechert, H. Carrier diffusion in low-dimensional semiconductors: A comparison of quantum wells, disordered quantum wells, and quantum dots. Phys. Rev. B 2004, 70, 205311. [Google Scholar] [CrossRef] [Green Version]
- Borselli, M.; Johnson, T.J.; Painter, O. Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment. Opt. Express 2005, 13, 1515–1530. [Google Scholar] [CrossRef] [Green Version]
- Zhukov, A.E.; Moiseev, E.I.; Nadtochiy, A.M.; Fominykh, N.A.; Ivanov, K.A.; Makhov, I.S.; Maximov, M.V.; Zubov, F.I.; Dubrovskii, V.G.; Mintairov, S.A.; et al. Optical loss in microdisk lasers with dense quantum dot arrays. IEEE J. Quantum Electron. 2023, 59, 2000108. [Google Scholar] [CrossRef]
- Markus, A.; Chen, J.X.; Gauthier-Lafaye, O.; Provost, J.-G.; Paranthoën, C.; Fiore, A. Impact of interband relaxation on the performance of a quantum-dot laser. IEEE J. Selected Topics Quantum Electron. 2003, 9, 1308. [Google Scholar] [CrossRef]
- Korenev, V.V.; Savelyev, A.V.; Maximov, M.V.; Zubov, F.I.; Shernyakov, Y.M.; Kulagina, M.M.; Zhukov, A.E. Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss. Appl. Phys. Lett. 2017, 111, 132103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhov, I.; Ivanov, K.; Moiseev, E.; Dragunova, A.; Fominykh, N.; Shernyakov, Y.; Maximov, M.; Kryzhanovskaya, N.; Zhukov, A. Two-State Lasing in Microdisk Laser Diodes with Quantum Dot Active Region. Photonics 2023, 10, 235. https://doi.org/10.3390/photonics10030235
Makhov I, Ivanov K, Moiseev E, Dragunova A, Fominykh N, Shernyakov Y, Maximov M, Kryzhanovskaya N, Zhukov A. Two-State Lasing in Microdisk Laser Diodes with Quantum Dot Active Region. Photonics. 2023; 10(3):235. https://doi.org/10.3390/photonics10030235
Chicago/Turabian StyleMakhov, Ivan, Konstantin Ivanov, Eduard Moiseev, Anna Dragunova, Nikita Fominykh, Yuri Shernyakov, Mikhail Maximov, Natalia Kryzhanovskaya, and Alexey Zhukov. 2023. "Two-State Lasing in Microdisk Laser Diodes with Quantum Dot Active Region" Photonics 10, no. 3: 235. https://doi.org/10.3390/photonics10030235
APA StyleMakhov, I., Ivanov, K., Moiseev, E., Dragunova, A., Fominykh, N., Shernyakov, Y., Maximov, M., Kryzhanovskaya, N., & Zhukov, A. (2023). Two-State Lasing in Microdisk Laser Diodes with Quantum Dot Active Region. Photonics, 10(3), 235. https://doi.org/10.3390/photonics10030235