Handwritten Digits Recognition Based on a Parallel Optoelectronic Time-Delay Reservoir Computing System
Abstract
:1. Introduction
2. System Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Tan, X. Unsupervised feature learning with c-SVDDNet. Pattern Recognit. 2016, 60, 473–485. [Google Scholar] [CrossRef] [Green Version]
- Elyan, E.; Vuttipittayamongkol, P.; Johnston, P.; Martin, K.; McPherson, K.; Moreno-Garcia, C.F.; Jayne, C.; Sarker, M.d.M.K. Computer vision and machine learning for medical image analysis: Recent advances, challenges, and way forward. Art. Int. Surg. 2022, 2, 24–45. [Google Scholar] [CrossRef]
- Ahonen, T.; Hadid, A.; Pietikainen, M. Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [Google Scholar] [CrossRef] [PubMed]
- Kitayama, K.; Notomi, M.; Naruse, M.; Inoue, K.; Kawakami, S.; Uchida, A. Novel frontier of photonics for data processing—Photonic accelerator. APL Photonics 2019, 4, 090901. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, G.; Yamane, T.; Heroux, J.B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances in physical reservoir computing: A review. Neural Netw. 2019, 15, 100–123. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, H. The ‘Echo State’ Approach to Analysing and Training Recurrent Neural Networks; GMD Report 148; German National Research Institute for Computer Science: Darmstadt, Germany, 2001. [Google Scholar]
- Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable States: A new framework for neural computation based on perturbations. Neural Comput. 2002, 14, 2531–2560. [Google Scholar] [CrossRef] [PubMed]
- Vandoorne, K.; Mechet, P.; Vaerenbergh, T.; Fiers, M.; Morthier, G.; Verstraeten, D.; Schrauwen, B.; Dambre, J.; Bienstman, P. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 2014, 5, 3541. [Google Scholar] [CrossRef] [Green Version]
- Hon, K.; Kuwabiraki, Y.; Goto, M.; Nakatani, R.; Suzuki, Y.; Nomura, H. Numerical simulation of artificial spin ice for reservoir computing. Appl. Phys. Express 2021, 14, 033001. [Google Scholar] [CrossRef]
- Appeltant, L.; Soriano, M.; Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I. Information processing using a single dynamical node as complex system. Nat. Commun. 2011, 2, 468. [Google Scholar] [CrossRef] [Green Version]
- Soriano, M.; Ortin, S.; Keuninckx, L.; Appeltant, L.; Danckaert, J.; Pesquera, L.; Sande, G. Delay-based reservoir computing: Noise effects in a combined analog and digital implementation. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 388–393. [Google Scholar] [CrossRef]
- Larger, L.; Soriano, M.; Brunner, D.; Appeltant, L.; Gutierrez, J.; Pesquera, L.; Mirasso, R.; Fischer, I. Photonic information processing beyond Turing: An optoelectronic implementation of reservoir computing. Opt. Express 2012, 20, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S. Optoelectronic reservoir computing. Sci. Rep. 2012, 2, 287. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yi, L.; Ke, J.; Yang, Z.; Yang, Y.; Huang, L.; Zhuge, Q.; Hu, W. Reservoir computing system with double optoelectronic feedback loops. Opt. Express 2019, 27, 27431–27440. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Zhao, Q.; Yin, H. Efficient optoelectronic reservoir computing with three-route input based on optical delay lines. Appl. Opt. 2019, 58, 4111–4117. [Google Scholar] [CrossRef] [PubMed]
- Duport, F.; Schneider, B.; Smerieri, A.; Haelterman, M.; Massar, S. All-optical reservoir computing. Opt. Express 2012, 20, 22783–22795. [Google Scholar] [CrossRef]
- Hou, Y.; Xia, G.; Yang, W.; Wang, D.; Jayaprasath, E.; Jiang, Z.; Hu, C.; Wu, M. Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection. Opt. Express 2018, 26, 10211–10219. [Google Scholar] [CrossRef]
- Yue, D.; Wu, Z.; Hou, Y.; Cui, B.; Jin, Y.; Dai, M.; Xia, G. Performance optimization research of reservoir computing system based on an optical feedback semiconductor laser under electrical information injection. Opt. Express 2019, 27, 19931–19939. [Google Scholar] [CrossRef]
- Guo, X.; Xiang, S.; Qu, Y.; Han, Y.; Wen, A. Enhanced prediction performance of a neuromorphic reservoir computing system using a semiconductor nanolaser with double phase conjugate feedbacks. J. Light. Technol. 2021, 39, 129–135. [Google Scholar] [CrossRef]
- Brunner, D.; Soriano, M.C.; Mirasso, C.R.; Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 2013, 4, 1364. [Google Scholar] [CrossRef] [Green Version]
- Larger, L.; Baylón-Fuentes, A.; Martinenghi, R.; Udaltsov, V.S.; Chembo, Y.K.; Jacquot, M. High-speed photonic reservoir computing using a time-delay-based architecture: Million words per sercond classification. Phys. Rev. X 2017, 7, 011015. [Google Scholar] [CrossRef] [Green Version]
- Zhong, D.Z.; Yang, H.; Xi, J.T.; Zeng, N.; Xu, Z.; Deng, F.Q. Predictive learning of multi-channel isochronal chaotic synchronization by utilizing parallel optical reservoir computers based on three laterally coupled semiconductor lasers with delay-time feedback. Opt. Express 2021, 29, 5279–5294. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.Y.; Chembo, Y.K. Classification of IO-modulated signals based on reservoir computing with narrowband optoelectronic oscillators. IEEE J. Quantum Electron. 2021, 57, 5000408. [Google Scholar] [CrossRef]
- Han, M.Y.; Wang, M.G.; Fan, Y.C.; Cai, S.Y.; Guo, Y.X.; Zhang, N.H.; Schatz, R.; Popov, S.; Ozolins, O.; Pang, X.D. Simultaneous modulation format identification and OSNR monitoring based on optoelectronic reservoir computing. Opt. Express 2022, 30, 47515–47527. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhao, Q.; Yin, H.; Yue, H. Handwritten numeral recognition utilizing reservoir computing subject to optoelectronic feedback. In Proceedings of the International Conference on Natural Computation (ICNC), Zhangjiajie, China, 15–17 August 2015. [Google Scholar]
- Wan, L.; Zeiler, M.; Zhang, S.; Cun, Y.; Fergus, R. Regularization of neural networks using dropconnect. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Antonik, P.; Marsal, N.; Rontani, D. Large-scale spatiotemporal photonic reservoir computer for image classification. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 7700812. [Google Scholar] [CrossRef] [Green Version]
- Gardner, S.; Haider, M.; Moradi, L.; Vantsevich, V. A modified echo state network for time independent image classification. In Proceedings of the IEEE International Midwest Symposium on Circuits and Systems, East Lansing, MI, USA, 9–11 August 2021. [Google Scholar]
- Murphy, T.E.; Cohen, A.B.; Ravoori, B.; Schmitt, K.R.B.; Setty, A.V.; Sorrentino, F.; Williams, C.R.S.; Ott, E.; Roy, R. Complex dynamics and synchronization of delayed-feedback nonlinear oscillators. Phil. Trans. R. Soc. 2010, 368, 343–366. [Google Scholar] [CrossRef]
- Larger, L.; Dudley, J. Nonlinear dynamics optoelectronic chaos. Nature 2010, 465, 41–42. [Google Scholar] [CrossRef]
- Cohen, A.; Ravoori, B.; Murphy, T.; Roy, R. Using synchronization for prediction of high-dimensional chaotic dynamics. Phys. Rev. Lett. 2008, 101, 154102. [Google Scholar] [CrossRef]
- Argyris, A.; Syvridis, D.; Larger, L.; Annovazzi-Lodi, V.; Colet, P.; Fischer, I.; Garcia-Ojalvo, J.; Mirasso, C.R.; Pesquera, L.; Shore, K.A. Chaos-based communications at high bit rates using commercial fiber-optic links. Nature 2005, 438, 343–346. [Google Scholar] [CrossRef]
- Tezuka, M.; Kanno, K.; Bunsen, M. Reservoir computing with a slowly modulated mask signal for preprocessing using a mutually coupled optoelectronic system. Jpn. J. Appl. Phys. 2016, 55, 08RE06. [Google Scholar] [CrossRef]
- Antonik, P.; Duport, F.; Hermans, M.; Smerieri, A.; Haelterman, M.; Massar, S. Online training of an opto-electronic reservoir computer applied to real-time channel equalization. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2686–2698. [Google Scholar] [CrossRef] [Green Version]
- Kussul, E.; Baidyk, T. Improved method of handwritten digit recognition tested on MNIST database. Image Vis. Comput. 2004, 22, 971–981. [Google Scholar] [CrossRef]
- Chao, D.; Cai, F.; Mohammed, A.Z.; Wen, M.; Seung, H.L.; Wei, D.L. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017, 8, 2204. [Google Scholar]
- Jain, A.K.; Farrokhnia, F. Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 1991, 24, 1167–1186. [Google Scholar] [CrossRef] [Green Version]
- Vinckier, Q.; Duport, F.; Smerieri, A.; Vandoorne, K.; Bienstman, P.; Haelterman, M.; Massar, S. High performance photonic reservoir computer based on a coherently driven passive cavity. Optica 2015, 2, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Yue, D.Z.; Hou, Y.S.; Wu, Z.M.; Hu, C.X.; Xiao, Z.Z.; Xia, G.Q. Experimental investigation of an Optical reservoir computing system based on two parallel time-delay reservoirs. IEEE Photonics J. 2021, 13, 8500111. [Google Scholar] [CrossRef]
- Sugano, C.; Kanno, K.; Uchida, A. Reservoir computing using multiple lasers with feedback on a photonic integrated circuit. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1500409. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, D.; Hou, Y.; Hu, C.; Zang, C.; Kou, Y. Handwritten Digits Recognition Based on a Parallel Optoelectronic Time-Delay Reservoir Computing System. Photonics 2023, 10, 236. https://doi.org/10.3390/photonics10030236
Yue D, Hou Y, Hu C, Zang C, Kou Y. Handwritten Digits Recognition Based on a Parallel Optoelectronic Time-Delay Reservoir Computing System. Photonics. 2023; 10(3):236. https://doi.org/10.3390/photonics10030236
Chicago/Turabian StyleYue, Dianzuo, Yushuang Hou, Chunxia Hu, Cunru Zang, and Yingzhe Kou. 2023. "Handwritten Digits Recognition Based on a Parallel Optoelectronic Time-Delay Reservoir Computing System" Photonics 10, no. 3: 236. https://doi.org/10.3390/photonics10030236
APA StyleYue, D., Hou, Y., Hu, C., Zang, C., & Kou, Y. (2023). Handwritten Digits Recognition Based on a Parallel Optoelectronic Time-Delay Reservoir Computing System. Photonics, 10(3), 236. https://doi.org/10.3390/photonics10030236