Precise Determination of Magnetic Gradient Relaxation of Coupled Atomic Spin Ensemble in Spin-Exchange Relaxation-Free Co-Magnetometer
Abstract
:1. Introduction
2. Basic Principle
2.1. Fundamentals of Co-Magnetometer
2.2. Dynamics Modeling of Spin Ensembles in Magnetic Fields
2.3. Magnetic Gradient Relaxation Theory for Coupled Atomic Spin Systems
3. Experimental Setup
4. Results and Discussion
4.1. Magnetic Gradient Relaxation of Alkali Metal Atom Measurement
4.2. Magnetic Gradient Relaxation of Inert Atom Measurement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Happer, W.; Tam, A.C. Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors. Phys. Rev. A. 1977, 16, 5. [Google Scholar] [CrossRef]
- Meyer, D.; Larsen, M. Nuclear Magnetic Resonance Gyro for Inertial Navigation. Gyroscopy Navig. 2014, 5, 75. [Google Scholar] [CrossRef]
- Kominis, I.K.; Kornack, T.W.; Allred, J.C.; Romalis, M.V. A Subfemtotesla Multichannel Atomic Magnetometer. Nature 2003, 422, 596. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.B.; Maloof, A.C.; Romalis, M.V. Ultrahigh Sensitivity Magnetic Field and Magnetization Measurements with an Atomic Magnetometer. Appl. Phys. Lett. 2010, 97, 151110. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.; Bulatowicz, M. Nuclear Magnetic Resonance Gyroscope for DARPA’s Micro-Technology for Positioning, Navigation and Timing Program. In Proceedings of the 2014 International Symposium on Inertial Sensors and Systems (ISISS), Laguna Beach, CA, USA, 25–26 February 2014; p. 1. [Google Scholar]
- Stoner, R.; Walsworth, R. Atomic physics: Collisions give sense of direction. Nat. Phys. 2006, 2, 17. [Google Scholar] [CrossRef]
- Fang, J.C.; Qin, J. Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications. Sensors 2012, 12, 6331. [Google Scholar] [CrossRef]
- Zhao, T.; Ying, Y.; Wei, K.; Xie, H.T.; Mu, T.J.; Fang, X.J.; Xu, Z.T.; Zhai, Y.Y. Ultra-sensitive all-optical comagnetometer with laser heating. J. Phys. D 2022, 55, 165103. [Google Scholar] [CrossRef]
- Wei, K.; Zhao, T.; Fang, X.J.; Xu, Z.T.; Liu, C.; Cao, Q.; Wickenbrock, A.; Hu, Y.H.; Ji, W.; Fang, J.C.; et al. Ultrasensitive Atomic Comagnetometer with Enhanced Nuclear Spin Coherence. Phys. Rev. Lett. 2023, 130, 63201. [Google Scholar] [CrossRef]
- Pang, H.Y.; Liu, F.; Fan, W.F.; Wu, Z.H.; Yuan, Q.; Quan, W. Comprehensive analysis of the effects of magnetic fieldgradient on the performance of the SERF co-magnetometer. Opt. Express 2023, 31, 5215. [Google Scholar] [CrossRef]
- Schearer, L.D.; Walters, G.K. Nuclear Spin-Lattice Relaxation in the Presence of Magnetic-Field Gradients. Phys. Rev. J. 1965, 139, 1398. [Google Scholar] [CrossRef]
- Happer, W.; Tang, H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors. Phys. Rev. Lett. 1973, 31, 273. [Google Scholar] [CrossRef]
- Allred, J.C.; Lyman, R.N.; Kornack, T.W.; Romalis, M.V. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 2002, 89, 130801. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.C.; Long, X.W.; Yuan, J.; Fan, Z.F.; Luo, H. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light. Sci. Rep. 2016, 6, 32605. [Google Scholar] [CrossRef] [Green Version]
- Li, R.J.; Quan, W.; Fang, J.C. Polarization Measurement of Cs Using the Pump Laser Beam. IEEE Photonics J. 2017, 9, 1. [Google Scholar] [CrossRef]
- Ma, Y.N.; Zhang, K.X.; Wang, Y.G.; Yang, K.; Zhai, Y.Y.; Lu, J.X. Fast extraction of the electron spin-relaxationrate in the SERF magnetometer from a transient response. Opt. Express 2022, 30, 17383. [Google Scholar] [CrossRef]
- Fang, X.J.; Wei, K.; Zhai, Y.Y.; Zhao, T.; Chen, X.; Zhou, M.T.; Liu, Y.; Ma, D.Y.; Xiao, Z.S. Analysis of effects of magnetic field gradient on atomic spin polarization and relaxation in optically pumped atomic magnetometers. Opt. Express 2022, 30, 3926. [Google Scholar] [CrossRef]
- Mirijanian, J.J. Techniques to Characterize Vapor Cell Performance for a Nuclear-Magnetic-Resonance Gyroscope. Ph.D. Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2012. [Google Scholar]
- Savukov, I.M.; Romalis, M.V. NMR Detection with an Atomic Magnetometer. Phys. Rev. Lett. 2005, 94, 123001. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Zhai, Y.Y.; Liu, C.; Xie, H.T.; Cao, Q.; Fang, X.J. Spin polarization characteristics of hybrid optically pumped comagnetometers with different density ratios. Opt. Express 2021, 30, 15. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.J.; Cai, H.W.; Ding, M.; Fang, J.C. Optimization of the alkali-metal density ratio in a hybrid optical pumping atomic magnetometer. Meas. Sci. Technol. 2019, 30, 15005. [Google Scholar] [CrossRef]
- Duan, L.H.; Fang, J.C.; Li, R.J.; Jiang, L.W.; Ding, M.; Wang, W. Light intensity stabilization based on the second harmonic of the photo elastic modulator detection in the atomic magnetometer. Opt. Express 2015, 23, 32481. [Google Scholar] [CrossRef]
- Fang, J.C.; Chen, Y.; Lu, Y.; Quan, W.; Zou, S. Dynamics of Rb and 21Ne spin ensembles interacting by spin exchange with a high Rb magnetic field. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 135002. [Google Scholar] [CrossRef]
- Chen, Y.; Quan, W.; Zou, S.; Lu, Y.; Duan, L.H.; Li, Y.; Zhang, H.; Ding, M.; Fang, J.C. Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne comagnetometer. Sci. Rep. 2016, 6, 36547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornack, T.W.; Ghosh, R.K.; Romalis, M.V. Nuclear spin gyroscope based on an atomic comagnetometer. Phys. Rev. Lett. 2005, 95, 230801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, R.K. Spin Exchange Optical Pumping of Neon and Its Applications. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2009. [Google Scholar]
- Babcock, E.; Nelson, I.A.; Kadlecek, S.; Walker, T.G. 3He Polarization-Dependent EPR Frequency Shifts of Alkali-Metal–3He Pairs. Phys. Rev. A 2005, 71, 13414. [Google Scholar] [CrossRef]
- Stoner, R.E.; Walsworth, R.L. Measurement of the 21Ne Zeeman Frequency Shift Due to Rb-21Ne Collisions. Phys. Rev. A 2002, 66, 32704. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, S.R.; Cates, G.D.; Chien, T.R.; Gonatas, D.; Happer, W.; Walker, T.G. Frequency Shifts of the Magnetic-Resonance Spectrum of Mixtures of Nuclear Spin-Polarized Noble Gases and Vapors of Spin-Polarized Alkali-Metal Atoms. Phys. Rev. A 1989, 39, 5613. [Google Scholar] [CrossRef]
- Fang, J.C.; Wan, S.-A.; Chen, Y. Measurement of 129Xe Frequency Shift Due to Cs-129Xe Collisions. Chin. Phys. B 2014, 23, 63401. [Google Scholar] [CrossRef]
- Wei, K.; Zhao, T.; Fang, X.J.; Li, H.R.; Zhai, Y.Y.; Han, B.C.; Quan, W. Simultaneous Determination of the Spin Polarizations of Noble-Gas and Alkali-Metal Atoms Based on the Dynamics of the Spin Ensembles. Phys. Rev. A 2020, 13, 44027. [Google Scholar] [CrossRef]
- Seltzer, S.J. Developments in Alkali-Metal Atomic Magnetometry. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2008. [Google Scholar]
- Kornack, T.W.; Romalis, M.V. Dynamics of Two Overlapping Spin Ensembles Interacting by Spin Exchange. Phys. Rev. Lett. 2002, 89, 253002. [Google Scholar] [CrossRef] [Green Version]
- Cates, G.D.; Schaefer, S.R.; Happer, W. Relaxation of spins due to field inhomogeneities in gaseous samples at low magnetic field and low pressures. Phys. Rev. A 1988, 37, 2877. [Google Scholar] [CrossRef]
- Hasson, K.C.; Cates, G.D.; Lerman, K.; Bogorad, P.; Happer, W. Spin relaxation due to magnetic-field inhomogeneities: Quartic dependence and diffusion-constant measurements. Phys. Rev. A 1990, 42, 5766. [Google Scholar] [CrossRef]
- Lu, J.X.; Zhang, S.W.; Zhou, Y.; Yan, Y.G.; Lu, F.; Wang, K.; Zhai, Y.Y.; Ye, M. Optimal buffer gas pressure in dual-beam spin-exchange relaxation-free magnetometers. Sens. Actuator A Phys. 2022, 347, 113928. [Google Scholar] [CrossRef]
- Yan, Y.G.; Lu, J.X.; Zhang, S.W.; Lu, F.; Yin, K.F.; Wang, K.; Zhou, B.Q.; Liu, G. Three-axis closed-loop optically pumped magnetometer operated in the SERF regime. Opt. Express 2022, 30, 18300. [Google Scholar] [CrossRef]
- Ma, D.Y.; Lu, J.X.; Fang, X.J.; Yang, K.; Wang, K.; Zhang, N.; Han, B.C.; Ding, M. Parameter modeling analysis of a cylindrical ferrite magnetic shield to reduce magnetic noise. IEEE Trans. Ind. Electron. 2022, 69, 991. [Google Scholar] [CrossRef]
- Budker, D.; Gawlik, W.; Kimball, D.F.; Weis, A. Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 2002, 74, 1153. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhai, Y.; Fan, W.; Zhang, Y.; Xing, L.; Jiang, L.W.; Quan, W. Nuclear magnetic field measurement of the spin-exchange optically pumped noble gas in a self-compensated atomic comagnetometer. Opt. Express 2020, 28, 17683. [Google Scholar] [CrossRef]
Atomic Source Type | Fermi Contact Constant |
---|---|
K-21Ne | 30.8 ± 2.7 [26] |
K-4He | 5.99 ± 0.11 [27] |
Rb-21Ne | 32.0 ± 2.9 [28] |
Rb-4He | 6.39 ± 0.02 [28] |
Rb-129Xe | 644 ± 269 [29] |
Cs-129Xe | 653 ± 20 [30] |
Magnetic Field Gradient | 5 nT/cm | 10 nT/cm | 15 nT/cm | 20 nT/cm | 25 nT/cm |
---|---|---|---|---|---|
4032.65 s−1 | 4048.53 s−1 | 4066.20 s−1 | 4085.12 s−1 | 4103.62 s−1 | |
192.81 s−1 | 208.91 s−1 | 226.51 s−1 | 244.77 s−1 | 264.3 s−1 | |
8.41 s−1 | 8.13 s−1 | 8.26 s−1 | 8.92 s−1 | 7.89 s−1 |
Magnetic Field Gradient | 5 nT/cm | 10 nT/cm | 15 nT/cm | 20 nT/cm | 25 nT/cm |
---|---|---|---|---|---|
4051.22 s−1 | 4069.02 s−1 | 4072.18 s−1 | 4089.65 s−1 | 4094.43 s−1 | |
160.57 s−1 | 175.06 s−1 | 183.20 s−1 | 193.51 s−1 | 204.96 s−1 | |
59.22 s−1 | 62.53 s−1 | 57.55 s−1 | 62.71 s−1 | 58.04 s−1 |
Magnetic Field Gradient (x-axis) | 5 nT/cm | 10 nT/cm | 15 nT/cm | 20 nT/cm | 25 nT/cm |
---|---|---|---|---|---|
0.0660 s−1 | 0.0678 s−1 | 0.0650 s−1 | 0.0661 s−1 | 0.0659 s−1 | |
0.000826 s−1 | 0.00104 s−1 | 0.00128 s−1 | 0.000158 s−1 | 0.000189 s−1 | |
Magnetic Field Gradient (y-axis) | 5 nT/cm | 10 nT/cm | 15 nT/cm | 20 nT/cm | 25 nT/cm |
0.0682 s−1 | 0.0686 s−1 | 0.070 s−1 | 0.0682 s−1 | 0.0679 s−1 | |
0.000864 s−1 | 0.00107 s−1 | 0.00133 s−1 | 0.000159 s−1 | 0.000196 s−1 | |
Magnetic Field Gradient (z-axis) | 5 nT/cm | 10 nT/cm | 15 nT/cm | 20 nT/cm | 25 nT/cm |
0.128 s−1 | 0.151 s−1 | 0.179 s−1 | 0.208 s−1 | 0.242 s−1 | |
0.000639 s−1 | 0.000641 s−1 | 0.000648 s−1 | 0.000657 s−1 | 0.000638 s−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Wei, K.; Fan, W.; Li, S.; Cao, Q.; Quan, W.; Zhai, Y.; Xiao, Z. Precise Determination of Magnetic Gradient Relaxation of Coupled Atomic Spin Ensemble in Spin-Exchange Relaxation-Free Co-Magnetometer. Photonics 2023, 10, 400. https://doi.org/10.3390/photonics10040400
Fang X, Wei K, Fan W, Li S, Cao Q, Quan W, Zhai Y, Xiao Z. Precise Determination of Magnetic Gradient Relaxation of Coupled Atomic Spin Ensemble in Spin-Exchange Relaxation-Free Co-Magnetometer. Photonics. 2023; 10(4):400. https://doi.org/10.3390/photonics10040400
Chicago/Turabian StyleFang, Xiujie, Kai Wei, Wenfeng Fan, Siran Li, Qian Cao, Wei Quan, Yueyang Zhai, and Zhisong Xiao. 2023. "Precise Determination of Magnetic Gradient Relaxation of Coupled Atomic Spin Ensemble in Spin-Exchange Relaxation-Free Co-Magnetometer" Photonics 10, no. 4: 400. https://doi.org/10.3390/photonics10040400
APA StyleFang, X., Wei, K., Fan, W., Li, S., Cao, Q., Quan, W., Zhai, Y., & Xiao, Z. (2023). Precise Determination of Magnetic Gradient Relaxation of Coupled Atomic Spin Ensemble in Spin-Exchange Relaxation-Free Co-Magnetometer. Photonics, 10(4), 400. https://doi.org/10.3390/photonics10040400