Full-Color and Anti-Counterfeit Printings with All-Dielectric Chiral Metasurfaces
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results and Discussions
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dean, N. Colouring at the nanoscale. Nat. Nanotechnol. 2015, 10, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Baranov, D.G.; Zuev, D.A.; Lepeshov, S.I.; Kotov, O.V.; Krasnok, A.E.; Evlyukhin, A.B.; Chichkov, B.N. All-dielectric nanophotonics: The quest for better materials and fabrication techniques. Optica 2017, 4, 814. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Duan, H.; Hegde, R.S.; Koh, S.C.W.; Wei, J.N.; Yang, J.K.W. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 2012, 7, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.-R.; Xu, C.; Liao, J.; Liu, J.; Chen, Y. High-resolution plasmonic structural colors from nanohole arrays with bottom metal disks. Opt. Lett. 2016, 41, 1400. [Google Scholar] [CrossRef]
- Wang, X.; Xu, D.; Jaquet, B.; Yang, Y.; Wang, J.; Huang, H.; Chen, Y.; Gerhard, C.; Zhang, K. Structural Colors by Synergistic Birefringence and Surface Plasmon Resonance. ACS Nano 2020, 14, 16832–16839. [Google Scholar] [CrossRef]
- Shaltout, A.M.; Kim, J.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Ultrathin and multicolour optical cavities with embedded metasurfaces. Nat. Commun. 2018, 9, 2673. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Siew, S.Y.; Chan, J.Y.E.; Deng, J.; Wu, Q.Y.S.; Jin, L.; Yang, J.K.W.; Teng, J.; Danner, A.; Qiu, C.-W. Patterned resist on flat silver achieving saturated plasmonic colors with sub-20-nm spectral linewidth. Mater. Today 2020, 35, 99–105. [Google Scholar] [CrossRef]
- Kim, Y.; Jung, K.; Cho, J.; Hyun, J.K. Realizing Vibrant and High-Contrast Reflective Structural Colors from Lossy Metals Supporting Dielectric Gratings. ACS Nano 2019, 13, 10717–10726. [Google Scholar] [CrossRef]
- Jung, Y.; Jung, H.; Choi, H.; Lee, H. Polarization Selective Color Filter Based on Plasmonic Nanograting Embedded Etalon Structures. Nano Lett. 2020, 20, 6344–6350. [Google Scholar] [CrossRef]
- Hail, C.U.; Schnoering, G.; Damak, M.; Poulikakos, D.; Eghlidi, H. A Plasmonic Painter’s Method of Color Mixing for a Continuous Red–Green–Blue Palette. ACS Nano 2020, 14, 1783–1791. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, V.R.; Lee, S.-S.; Kim, E.-S.; Choi, D.-Y. Aluminum Plasmonics Based Highly Transmissive Polarization-Independent Subtractive Color Filters Exploiting a Nanopatch Array. Nano Lett. 2014, 14, 6672–6678. [Google Scholar] [CrossRef]
- Tan, S.J.; Zhang, L.; Zhu, D.; Goh, X.M.; Wang, Y.M.; Kumar, K.; Qiu, C.-W.; Yang, J.K.W. Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures. Nano Lett. 2014, 14, 4023–4029. [Google Scholar] [CrossRef]
- Zhu, X.; Vannahme, C.; Højlund-Nielsen, E.; Mortensen, N.A.; Kristensen, A. Plasmonic colour laser printing. Nat. Nanotechnol. 2016, 11, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Wang, D.; Kudyshev, Z.A.; Xuan, Y.; Wang, Z.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Enabling Optical Steganography, Data Storage, and Encryption with Plasmonic Colors. Laser Photonics Rev. 2021, 15, 2000343. [Google Scholar] [CrossRef]
- Shi, L.; Niu, J.; Li, L.; Wang, C.; Shang, X.; Zhang, P.; Liu, Y.; Zhang, Y. Deep Subwavelength Wide-Angle Structural Colors at the Single Pixel Level. Adv. Opt. Mater. 2022, 10, 2200552. [Google Scholar] [CrossRef]
- Yang, B.; Cheng, H.; Chen, S.; Tian, J. Structural colors in metasurfaces: Principle, design and applications. Mater. Chem. Front. 2019, 3, 750–761. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Z.; Zang, J. All-Dielectric Silicon Nanoring Metasurface for Full-Color Printing. Nano Lett. 2020, 20, 8739–8744. [Google Scholar] [CrossRef]
- Yang, W.; Xiao, S.; Song, Q.; Liu, Y.; Wu, Y.; Wang, S.; Yu, J.; Han, J.; Tsai, D.-P. All-dielectric metasurface for high-performance structural color. Nat. Commun. 2020, 11, 1864. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Badloe, T.; Yang, Y.; Lee, T.; Mun, J.; Rho, J. Spectral Modulation through the Hybridization of Mie-Scatterers and Quasi-Guided Mode Resonances: Realizing Full and Gradients of Structural Color. ACS Nano 2020, 14, 15317–15326. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, Z.; Li, N.; Dong, Y.; Fu, Y.H.; Hu, T.; Zhong, Q.; Zhou, Y.; Li, D.; Zhu, S.; et al. Metasurface-based subtractive color filter fabricated on a 12-inch glass wafer using a CMOS platform. Photon. Res. PRJ 2021, 9, 13–20. [Google Scholar] [CrossRef]
- Li, L.; Niu, J.; Shang, X.; Chen, S.; Lu, C.; Zhang, Y.; Shi, L. Bright Field Structural Colors in Silicon-on-Insulator Nanostructures. ACS Appl. Mater. Interfaces 2021, 13, 4364–4373. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Liang, C.; Deng, L.; Deng, L.; Dai, Q.; Li, Z.; Zheng, G.; Zheng, G.; Zheng, G.; Zheng, G.; et al. Single-celled multifunctional metasurfaces merging structural-color nanoprinting and holography. Opt. Express 2021, 29, 10737–10748. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kim, J.; Koirala, I.; Yang, Y.; Badloe, T.; Jang, J.; Rho, J. Nearly Perfect Transmissive Subtractive Coloration through the Spectral Amplification of Mie Scattering and Lattice Resonance. ACS Appl. Mater. Interfaces 2021, 13, 26299–26307. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Jin, L.; Rezaei, S.D.; Wang, H.; Chen, Y.; Tjiptoharsono, F.; Ho, J.; Gorelik, S.; Ng, R.J.H.; Ruan, Q.; et al. Schrödinger’s red pixel by quasi-bound-states-in-the-continuum. Sci. Adv. 2022, 8, eabm4512. [Google Scholar] [CrossRef]
- Badloe, T.; Kim, J.; Kim, I.; Kim, W.-S.; Kim, W.S.; Kim, Y.-K.; Rho, J. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light Sci. Appl. 2022, 11, 118. [Google Scholar] [CrossRef]
- Shang, X.; Niu, J.; Wang, C.; Li, L.; Lu, C.; Zhang, Y.; Shi, L. Mie Resonances Enabled Subtractive Structural Colors with Low-Index-Contrast Silicon Metasurfaces. ACS Appl. Mater. Interfaces 2022, 14, 55933–55943. [Google Scholar] [CrossRef]
- Hentschel, M.; Koshelev, K.; Sterl, F.; Both, S.; Karst, J.; Shamsafar, L.; Weiss, T.; Kivshar, Y.; Giessen, H. Dielectric Mie voids: Confining light in air. Light Sci. Appl. 2023, 12, 3. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, Z.; Zhang, C.; Gao, Y.; Duan, Z.; Xiao, S.; Song, Q. All-Dielectric Full-Color Printing with TiO2 Metasurfaces. ACS Nano 2017, 11, 4445–4452. [Google Scholar] [CrossRef]
- Sun, S.; Yang, W.; Zhang, C.; Jing, J.; Gao, Y.; Yu, X.; Song, Q.; Xiao, S. Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces. ACS Nano 2018, 12, 2151–2159. [Google Scholar] [CrossRef]
- Koirala, I.; Lee, S.-S.; Choi, D.-Y. Highly transmissive subtractive color filters based on an all-dielectric metasurface incorporating TiO2 nanopillars. Opt. Express 2018, 26, 18320. [Google Scholar] [CrossRef]
- Yang, B.; Liu, W.; Li, Z.; Cheng, H.; Choi, D.-Y.; Chen, S.; Tian, J. Ultrahighly Saturated Structural Colors Enhanced by Multipolar-Modulated Metasurfaces. Nano Lett. 2019, 19, 4221–4228. [Google Scholar] [CrossRef]
- Zhang, C.; Jing, J.; Wu, Y.; Fan, Y.; Yang, W.; Wang, S.; Song, Q.; Xiao, S. Stretchable All-Dielectric Metasurfaces with Polarization-Insensitive and Full-Spectrum Response. ACS Nano 2020, 14, 1418–1426. [Google Scholar] [CrossRef]
- Huo, P.; Huo, P.; Song, M.; Song, M.; Zhu, W.; Zhu, W.; Zhang, C.; Chen, L.; Chen, L.; Lezec, H.J.; et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica 2020, 7, 1171–1172. [Google Scholar] [CrossRef]
- Eaves-Rathert, J.; Kovalik, E.; Ugwu, C.F.; Rogers, B.R.; Pint, C.L.; Valentine, J.G. Dynamic Color Tuning with Electrochemically Actuated TiO2 Metasurfaces. Nano Lett. 2022, 22, 1626–1632. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Xu, Y.; Zhang, X.; Xiao, X.; Zhou, F.; Zhang, Z. All-dielectric high saturation structural colors enhanced by multipolar modulated metasurfaces. Opt. Express 2022, 30, 28954–28965. [Google Scholar] [CrossRef]
- Yang, B.; Ma, D.; Liu, W.; Choi, D.-Y.; Li, Z.; Cheng, H.; Cheng, H.; Tian, J.; Chen, S.; Chen, S.; et al. Deep-learning-based colorimetric polarization-angle detection with metasurfaces. Optica 2022, 9, 217–220. [Google Scholar] [CrossRef]
- Li, L.; Niu, J.; Wang, C.; Shang, X.; Xue, H.; Hu, J.; Li, H.; Lu, C.; Zhao, S.; Zhang, Y.; et al. High-Saturation Full-Color Printing with All-Dielectric Chiral Metasurfaces. ACS Appl. Mater. Interfaces 2023. [Google Scholar]
- Park, C.-S.; Koirala, I.; Gao, S.; Shrestha, V.R.; Lee, S.-S.; Choi, D.-Y. Structural color filters based on an all-dielectric metasurface exploiting silicon-rich silicon nitride nanodisks. Opt. Express 2019, 27, 667. [Google Scholar] [CrossRef]
- Yang, J.-H.; Babicheva, V.E.; Yu, M.-W.; Lu, T.-C.; Lin, T.-R.; Chen, K.-P. Structural Colors Enabled by Lattice Resonance on Silicon Nitride Metasurfaces. ACS Nano 2020, 14, 5678–5685. [Google Scholar] [CrossRef]
- Daqiqeh Rezaei, S.; Dong, Z.; You En Chan, J.; Trisno, J.; Ng, R.J.H.; Ruan, Q.; Qiu, C.-W.; Mortensen, N.A.; Yang, J.K.W. Nanophotonic Structural Colors. ACS Photonics 2021, 8, 18–33. [Google Scholar] [CrossRef]
- Ko, J.H.; Yoo, Y.J.; Lee, Y.; Jeong, H.-H.; Song, Y.M. A review of tunable photonics: Optically active materials and applications from visible to terahertz. iScience 2022, 25, 104727. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Jang, J.; Kim, G.; Lee, J.; Badloe, T.; Mun, J.; Rho, J. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun. 2021, 12, 3614. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, Q.; Luo, S.S.; Ye, F.J.; Cui, H.Y.; Cui, T.J. Touch-Programmable Metasurface for Various Electromagnetic Manipulations and Encryptions. Small 2022, 18, 2203871. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qin, Z.; Huang, L.; Li, Y.; Zhao, R.; Zhou, H.; He, H.; Zhang, J.; Qu, S. Metasurface with dynamic chiral meta-atoms for spin multiplexing hologram and low observable reflection. PhotoniX 2022, 3, 10. [Google Scholar] [CrossRef]
- Ma, Q.; Gao, W.; Xiao, Q.; Ding, L.; Gao, T.; Zhou, Y.; Gao, X.; Yan, T.; Liu, C.; Gu, Z.; et al. Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform. eLight 2022, 2, 11. [Google Scholar] [CrossRef]
- Mehmood, M.Q.; Seong, J.; Naveed, M.A.; Kim, J.; Zubair, M.; Riaz, K.; Massoud, Y.; Rho, J. Single-Cell-Driven Tri-Channel Encryption Meta-Displays. Adv. Sci. 2022, 9, 2203962. [Google Scholar] [CrossRef]
- Bao, Y.; Yu, Y.; Xu, H.; Guo, C.; Li, J.; Sun, S.; Zhou, Z.-K.; Qiu, C.-W.; Wang, X.-H. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci.Appl. 2019, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Javed Satti, A.; Ashar Naveed, M.; Javed, I.; Mahmood, N.; Zubair, M.; Qasim Mehmood, M.; Massoud, Y. A highly efficient broadband multi-functional metaplate. Nanoscale Adv. 2023, 5, 2010–2016. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, L.; Zhang, R.-Y.; Duan, J.; Ng, J.; Chan, C.T.; Fung, K.H. Metric-Torsion Duality of Optically Chiral Structures. Phys. Rev. Lett. 2019, 122, 200201. [Google Scholar] [CrossRef]
- Choi, S.; Son, H.; Lee, B. Chirality-selective all-dielectric metasurface structural color display. Opt. Express 2021, 29, 41258–41267. [Google Scholar] [CrossRef]
- Shu, X.; Li, A.; Hu, G.; Wang, J.; Alù, A.; Chen, L. Fast encirclement of an exceptional point for highly efficient and compact chiral mode converters. Nat. Commun. 2022, 13, 2123. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Li, H.; Hu, H.; Shang, X.; Xue, H.; Hu, J.; Lu, C.; Zhao, S.; Niu, J.; Shi, L. Full-Color and Anti-Counterfeit Printings with All-Dielectric Chiral Metasurfaces. Photonics 2023, 10, 401. https://doi.org/10.3390/photonics10040401
Li L, Li H, Hu H, Shang X, Xue H, Hu J, Lu C, Zhao S, Niu J, Shi L. Full-Color and Anti-Counterfeit Printings with All-Dielectric Chiral Metasurfaces. Photonics. 2023; 10(4):401. https://doi.org/10.3390/photonics10040401
Chicago/Turabian StyleLi, Longjie, He Li, Huakui Hu, Xiao Shang, Huiwen Xue, Jinyu Hu, Cheng Lu, Shengjie Zhao, Jiebin Niu, and Lina Shi. 2023. "Full-Color and Anti-Counterfeit Printings with All-Dielectric Chiral Metasurfaces" Photonics 10, no. 4: 401. https://doi.org/10.3390/photonics10040401
APA StyleLi, L., Li, H., Hu, H., Shang, X., Xue, H., Hu, J., Lu, C., Zhao, S., Niu, J., & Shi, L. (2023). Full-Color and Anti-Counterfeit Printings with All-Dielectric Chiral Metasurfaces. Photonics, 10(4), 401. https://doi.org/10.3390/photonics10040401