Wavelength Effects on the Reflectivity of Niobium by Solid-State Laser Pulses
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lazarus, N.; Smith, G.L.; Dickey, M.D. Self-Folding Metal Origami. Adv. Intell. Syst. 2019, 1, 1900059. [Google Scholar] [CrossRef] [Green Version]
- Ashfold, M.; Claeyssens, F.; Fuge, G.; Henley, S. Pulser Laser Ablation and Deposition of Thin Films. Chem. Soc. Rev. 2004, 33, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Irimiciuc, S.A.; Chertopalov, S.; Lancok, J.; Craciun, V. Langmuir Probe Technique for Plasma Characterization during Pulsed Laser Deposition Process. Coatings 2021, 11, 762. [Google Scholar] [CrossRef]
- György, E.; Pérez, A.; Pérez Del Pino, A.; Serra, P.; Morenza, J. Influence of the ambient gas in laser structuring of the titanium surface. Surf. Coat. Technol. 2004, 187, 245–249. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Panchenko, A.N.; Tel’minov, A.E.; Shulepov, M.A. Formation of microtower structures on nanosecond laser ablation of liquid metals. Appl. Phys. A 2009, 98, 393. [Google Scholar] [CrossRef]
- Pedraza, A.J.; Fowlkes, J.D.; Guan, Y.F. Surface nanostructuring of silicon. Appl. Phys. A 2003, 77, 277–284. [Google Scholar] [CrossRef]
- Wang, Z.B.; Hong, M.H.; Luk‘yanchuk, B.S.; Huang, S.M.; Wang, Q.F.; Shi, L.P.; Chong, T.C. Parallel nanostructuring of GeSbTe film with particle mask. Appl. Phys. A 2004, 79, 1603–1606. [Google Scholar] [CrossRef]
- Hendow, S.T.; Shakir, S.A. Structuring materials with nanosecond laser pulses. Opt. Express 2010, 18, 10188–10199. [Google Scholar] [CrossRef] [PubMed]
- Visser, C.W.; Pohl, R.; Sun, C.; Römer, G.W.; Huisin‘t Veld, B.; Lohse, D. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer. Adv. Mater. 2015, 27, 4087–4092. [Google Scholar] [CrossRef] [Green Version]
- Zorba, V.; Boukos, N.; Zergioti, I.; Fotakis, C. Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: Structural and optical properties. Appl. Opt. 2008, 47, 1846–1850. [Google Scholar] [CrossRef]
- Tang, G.; Hourd, A.C.; Abdolvand, A. Nanosecond pulsed laser blackening of copper. Appl. Phys. Lett. 2012, 101, 231902. [Google Scholar] [CrossRef]
- Russo, R.E.; Mao, X.L.; Borisov, O.V.; Liu, H. Influence of wavelength on fractionation in laser ablation ICP-MS. J. Anal. Atomic Spectrom. 2000, 15, 1115–1120. [Google Scholar] [CrossRef]
- Gottfried, J.L.; De Lucia, F.C., Jr.; Munson, C.A.; Miziolek, A.W. Laser-induced breakdown spectroscopy for detection of explosives residues: A review of recent advances, challenges, and future prospects. Anal. Bioanal. Chem. 2009, 395, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Ta, D.V.; Dunn, A.; Wasley, T.J.; Kay, R.W.; Stringer, J.; Smith, P.J.; Connaughton, C.; Shephard, J.D. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl. Surf. Sci. 2015, 357, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Ocaña, J.L.; Jagdheesh, R.; García-Ballesteros, J.J. Direct generation of superhydrophobic microstructures in metals by UV laser sources in the nanosecond regime. Adv. Opt. Technol. 2016, 5, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.-Y.; Yen, M.-H.; Wei, C.-W.; Chuang, Y.-C.; Young, T.-H. Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J. Micromech. Microeng. 2005, 15, 1147–1156. [Google Scholar] [CrossRef]
- Bonch-Bruevich, A.M.; Imas, Y.A.; Romanov, G.S.; Libenson, M.N.; Mal’tsev, L.N. Effect of a laser pulse on the reflecting power of a metal. Sov. Phys. Technol. Phys. 1968, 13, 640–643. [Google Scholar]
- Basov, N.G.; Boiko, V.A.; Krokhin, O.N.; Semenov, O.G.; Sklizkov, G.V. Reduction of reflection coefficient for intense laser radiation of solid surfaces. Sov. Phys. -Technol. Phys. 1969, 13, 1581–1582. [Google Scholar]
- Benavides, O.; de la Cruz May, L.; Flores Gil, A. A comparative study on reflection of nanosecond Nd-YAG laser pulses in ablation of metals in air and in vacuum. Opt. Express 2013, 21, 13068–13073. [Google Scholar] [CrossRef]
- Benavides, O.; de la Cruz May, L.; Flores Gil, A.; Jimenez, L.J.A. Experimental study on reflection of high-intensity nanosecond Nd: YAG laser pulses in ablation of metals. Opt. Lasers Eng. 2015, 68, 83–86. [Google Scholar] [CrossRef]
- Benavides, O.; de la Cruz May, L.; Mejia, E.B.; Hernandez, J.A.R.; Gil, A.F. Laser wavelength effect on nanosecond laser light reflection in ablation of metals. Laser Phys. 2016, 26, 126101. [Google Scholar] [CrossRef]
- Nikishina, E.E.; Drobot, D.V.; Lebedeva, E.N. Niobium and tantalum: State of the world market, fields of application, and raw sources. Part I. Rus. J. Non-Ferrous Metals 2013, 54, 446–452. [Google Scholar] [CrossRef]
- Grill, R.; Gnadenberger, A. Niobium as mint metal: Production properties processing. Int. J. Refract. Metals Hard Mater. 2006, 24, 275–282. [Google Scholar] [CrossRef]
- Laverick, C. Niobium demand and superconductor applications: An overview. J. Less Common Metals 1988, 139, 107–122. [Google Scholar] [CrossRef]
- Eason, R. Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Li, X.; Li, Y.; Zou, G.; Zhang, H.; Wang, Z. Effect of laser wavelength on ablation characteristics of copper. J. Mater. Sci. Technol. 2019, 35, 239–245. [Google Scholar]
- Bhu-Shan, B. Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- L’Huillier, J.A.; Allen, C.B. Wavelength dependence of the reflectivity of aluminum and copper at normal incidence in the EUV and soft x-ray ranges. J. Appl. Phys. 2015, 118, 205301. [Google Scholar]
- Shafeev, G.A.; Nishimura, T.; Baba, M. Effect of laser wavelength on the efficiency of copper ablation by femtosecond laser pulses. Appl. Phys. A 2003, 77, 489–492. [Google Scholar]
- Tayyab, M.; Bhardwaj, R. Resonance-enhanced ablation of metals: Influence of laser polarization and wavelength. Opt. Express 2015, 23, 22747–22756. [Google Scholar]
- Liu, J.; Chen, J.; Li, W.; Li, G. Effect of laser wavelength on ablation threshold and processing characteristics of nickel thin film. Appl. Surf. Sci. 2017, 419, 293–298. [Google Scholar]
- Li, W.; Li, G.; Hu, Y.; Li, Z.; Liu, J. Effect of laser wavelength on laser-induced periodic surface structures formation on titanium thin film. Appl. Surf. Sci. 2019, 478, 119–127. [Google Scholar]
- Zuber, M.; Baumeier, B.; Böhme, R. Influence of laser wavelength on material removal rate, roughness and recast layer thickness in micro laser engraving of tool steel. J. Manuf. Proc. 2020, 59, 14–25. [Google Scholar]
- Benavides, O.; De La Cruz May, L.; Flores Gil, A. Handbooks Aplicaciones Laser en la Ingeniería. Ecorfan Editorial, December 2021, Mexico. Available online: https://www.ecorfan.org/handbooks/Handbooks_Aplicaciones_Laser_en_la_Ingenieria_TI/Handbooks_Aplicaciones_Laser_en_la_Ingenieria_TI.pdf (accessed on 26 March 2023).
- Benavides, O.; Golikov, V.; Lebedeva, O. Reflection of high-intensity nanosecond Nd:YAG laser pulses by metals. Appl. Phys. A 2013, 112, 113–117. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Reflection of femtosecond laser light in multipulse ablation of metals. J. Appl. Phys. 2011, 110, 043102. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Kuzmichev, V.M.; Kokody, N.G.; Kohns, P.; Dai, J.; Guo, C. Residual thermal effects in Al following single ns- and fs-laser pulse ablation. Appl. Phys. A 2006, 82, 357–362. [Google Scholar] [CrossRef]
- Winter, K.M.; Kalucki, J.; Koshel, D. 3-Process technologies for thermochemical surface engineering. In Thermochemical Surface Engineering of Steels; Mittemeijer, E.J., Somers, M.A.J., Eds.; Woodhead Publishing: Oxford, UK, 2015; pp. 141–206. [Google Scholar]
- Libenson, M.N.; Romanov, G.S.; Imas, Y.A. Temperature dependence of the optical constants of a metal in heating by laser radiation. Sov. Phys. -Technol. Phys. 1969, 13, 925–927. [Google Scholar]
- Ujihara, K. Reflectivity of Metals at High Temperatures. J. Appl. Phys. 1972, 43, 2376–2383. [Google Scholar] [CrossRef]
- Ready, J.R. Effects of High-Power Laser Radiation; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Anisimov, S.I.; Khokhlov, V.A. Instabilities in Laser-Matter Interaction. L.D. Landau Institute for Theoretical Physic; CRC Press: Boca Raton, FL, USA, 1995; ISBN 0-8493-8660-8. [Google Scholar]
- Prokhorov, A.M.; Konov, V.I.; Ursu, I.; Mihailescu, I.N. Laser Heating of Metals; Adam Hilger: Briston, UK, 1990. [Google Scholar]
- Walters, C.T.; Barnes, R.H.; Beverly III, R.E. Initiation of laser-supported-detonation (LSD) waves. J. Appl. Phys. 1978, 49, 2937–2949. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Kuz’michev, V.M. Absorption of laser radiation in craters on metal targets. Sov. J. Quantum Electr. 1980, 7, 183–186. [Google Scholar] [CrossRef]
- Tokarev, V.N.; Lunney, J.G.; Marine, W.; Sentis, M. Analytical thermal model of ultraviolet laser ablation with single-photon absorption in the plume. J. Appl. Phys. 1995, 78, 1241–1246. [Google Scholar] [CrossRef]
- Wen, S.-B.; Mao, X.; Greif, R.; Russo, R.E. Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis. J. Appl. Phys. 2007, 101, 023115. [Google Scholar] [CrossRef]
- Radziemski, L.J.; Cremers, D.A. Laser-Induced Plasmas and Applications; Marcel Dekker Inc.: New York, NY, USA, 1989. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- Kirkwood, S.E.; Tsui, Y.Y.; Fedosejevs, R.; Brantov, A.V.; Bychenkov, V.Y. Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets. Phys. Rev. B 2009, 79, 144120. [Google Scholar] [CrossRef] [Green Version]
- Golovashkin, A.I.; Leksina, I.E.; Motulevich, G.P.; Shubin, A.A. The Optical Properties of Niobium. Zh. Eksp. Teor. Fiz. 1968, 56, 51–64. [Google Scholar]
- Weaver, J.H.; Lynch, D.W.; Olson, C.G. Optical Properties of Niobium from 0.1 to 36.4 eV. Phys. Rev. B 1973, 7, 4311–4318. [Google Scholar] [CrossRef] [Green Version]
- Marla, D.; Bhandarkar, U.V.; Joshi, S.S. A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding. Appl. Phys. A 2014, 116, 273–285. [Google Scholar] [CrossRef]
- Kelly, R.; Miotello, A. Comments on explosive mechanisms of laser sputtering. Appl. Surf. Sci. 1996, 96–98, 205–215. [Google Scholar] [CrossRef]
- Porneala, C.; Willis, D. Observation of nanosecond laser-induced phase explosion in aluminum. Appl. Phys. Lett. 2006, 89, 211121. [Google Scholar] [CrossRef]
- Guillemot, F.; Prima, F.; Tokarev, V.N.; Belin, C.; Porté-Durrieu, M.C.; Gloriant, T.; Lazare, S. Single-pulse KrF laser ablation and nanopatterning in vacuum of β-titanium alloys used in biomedical applications. Appl. Phys. A 2004, 79, 811–813. [Google Scholar] [CrossRef]
- Smith, N.V. The optical properties of liquid metals. Adv. Phys. 1967, 16, 629–636. [Google Scholar] [CrossRef]
- Hodgson, J.N. The optical properties of liquid indium, cadmium, bismuth and antimony. Philos. Mag J. Theor. Exp. Appl. Phys. 1962, 7, 229–236. [Google Scholar] [CrossRef]
- Abeles, F. (Ed.) Optical Properties and Electronic Structure of Metals and Alloys; North-Holland: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Kudryashov, S.I.; Tikhov, A.A.; Zvorykin, V.D. Near-critical nanosecond laser-induced phase explosion on graphite surface. Appl. Phys. A 2011, 102, 493–499. [Google Scholar] [CrossRef]
- Wu, B.; Shin, Y.C. Absorption coefficient of aluminum near the critical point and the consequences on high-power nanosecond laser ablation. Appl. Phys. Lett. 2006, 89, 111902. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, X.; Shin, Y.C. Analysis of nanosecond laser ablation of aluminum with and without phase explosion in air and water. J. Laser Appl. 2013, 25, 032002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benavides, O.; de la Cruz May, L.; Flores Gil, A.; Mejia Beltran, E. Wavelength Effects on the Reflectivity of Niobium by Solid-State Laser Pulses. Photonics 2023, 10, 402. https://doi.org/10.3390/photonics10040402
Benavides O, de la Cruz May L, Flores Gil A, Mejia Beltran E. Wavelength Effects on the Reflectivity of Niobium by Solid-State Laser Pulses. Photonics. 2023; 10(4):402. https://doi.org/10.3390/photonics10040402
Chicago/Turabian StyleBenavides, Olena, Lelio de la Cruz May, Aaron Flores Gil, and Efrain Mejia Beltran. 2023. "Wavelength Effects on the Reflectivity of Niobium by Solid-State Laser Pulses" Photonics 10, no. 4: 402. https://doi.org/10.3390/photonics10040402
APA StyleBenavides, O., de la Cruz May, L., Flores Gil, A., & Mejia Beltran, E. (2023). Wavelength Effects on the Reflectivity of Niobium by Solid-State Laser Pulses. Photonics, 10(4), 402. https://doi.org/10.3390/photonics10040402